Step |
Hyp |
Ref |
Expression |
1 |
|
tz9.12lem.1 |
⊢ 𝐴 ∈ V |
2 |
|
tz9.12lem.2 |
⊢ 𝐹 = ( 𝑧 ∈ V ↦ ∩ { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1 ‘ 𝑣 ) } ) |
3 |
|
imassrn |
⊢ ( 𝐹 “ 𝐴 ) ⊆ ran 𝐹 |
4 |
2
|
rnmpt |
⊢ ran 𝐹 = { 𝑥 ∣ ∃ 𝑧 ∈ V 𝑥 = ∩ { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1 ‘ 𝑣 ) } } |
5 |
|
id |
⊢ ( 𝑥 = ∩ { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1 ‘ 𝑣 ) } → 𝑥 = ∩ { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1 ‘ 𝑣 ) } ) |
6 |
|
ssrab2 |
⊢ { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1 ‘ 𝑣 ) } ⊆ On |
7 |
|
eqvisset |
⊢ ( 𝑥 = ∩ { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1 ‘ 𝑣 ) } → ∩ { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1 ‘ 𝑣 ) } ∈ V ) |
8 |
|
intex |
⊢ ( { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1 ‘ 𝑣 ) } ≠ ∅ ↔ ∩ { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1 ‘ 𝑣 ) } ∈ V ) |
9 |
7 8
|
sylibr |
⊢ ( 𝑥 = ∩ { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1 ‘ 𝑣 ) } → { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1 ‘ 𝑣 ) } ≠ ∅ ) |
10 |
|
oninton |
⊢ ( ( { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1 ‘ 𝑣 ) } ⊆ On ∧ { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1 ‘ 𝑣 ) } ≠ ∅ ) → ∩ { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1 ‘ 𝑣 ) } ∈ On ) |
11 |
6 9 10
|
sylancr |
⊢ ( 𝑥 = ∩ { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1 ‘ 𝑣 ) } → ∩ { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1 ‘ 𝑣 ) } ∈ On ) |
12 |
5 11
|
eqeltrd |
⊢ ( 𝑥 = ∩ { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1 ‘ 𝑣 ) } → 𝑥 ∈ On ) |
13 |
12
|
rexlimivw |
⊢ ( ∃ 𝑧 ∈ V 𝑥 = ∩ { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1 ‘ 𝑣 ) } → 𝑥 ∈ On ) |
14 |
13
|
abssi |
⊢ { 𝑥 ∣ ∃ 𝑧 ∈ V 𝑥 = ∩ { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1 ‘ 𝑣 ) } } ⊆ On |
15 |
4 14
|
eqsstri |
⊢ ran 𝐹 ⊆ On |
16 |
3 15
|
sstri |
⊢ ( 𝐹 “ 𝐴 ) ⊆ On |