Metamath Proof Explorer


Theorem uhgr0vusgr

Description: The null graph, with no vertices, represented by a hypergraph, is a simple graph. (Contributed by AV, 5-Dec-2020)

Ref Expression
Assertion uhgr0vusgr GUHGraphVtxG=GUSGraph

Proof

Step Hyp Ref Expression
1 simpl GUHGraphVtxG=GUHGraph
2 eqid VtxG=VtxG
3 eqid EdgG=EdgG
4 2 3 uhgr0v0e GUHGraphVtxG=EdgG=
5 uhgriedg0edg0 GUHGraphEdgG=iEdgG=
6 5 adantr GUHGraphVtxG=EdgG=iEdgG=
7 4 6 mpbid GUHGraphVtxG=iEdgG=
8 1 7 usgr0e GUHGraphVtxG=GUSGraph