Metamath Proof Explorer


Theorem umgr2v2eiedg

Description: The edge function in a multigraph with two edges connecting the same two vertices. (Contributed by AV, 17-Dec-2020)

Ref Expression
Hypothesis umgr2v2evtx.g G=V0AB1AB
Assertion umgr2v2eiedg VWAVBViEdgG=0AB1AB

Proof

Step Hyp Ref Expression
1 umgr2v2evtx.g G=V0AB1AB
2 1 fveq2i iEdgG=iEdgV0AB1AB
3 simp1 VWAVBVVW
4 prex 0AB1ABV
5 opiedgfv VW0AB1ABViEdgV0AB1AB=0AB1AB
6 3 4 5 sylancl VWAVBViEdgV0AB1AB=0AB1AB
7 2 6 eqtrid VWAVBViEdgG=0AB1AB