Metamath Proof Explorer


Theorem umgr2v2eedg

Description: The set of edges in a multigraph with two edges connecting the same two vertices. (Contributed by AV, 17-Dec-2020)

Ref Expression
Hypothesis umgr2v2evtx.g G=V0AB1AB
Assertion umgr2v2eedg VWAVBVEdgG=AB

Proof

Step Hyp Ref Expression
1 umgr2v2evtx.g G=V0AB1AB
2 edgval EdgG=raniEdgG
3 2 a1i VWAVBVEdgG=raniEdgG
4 1 umgr2v2eiedg VWAVBViEdgG=0AB1AB
5 4 rneqd VWAVBVraniEdgG=ran0AB1AB
6 c0ex 0V
7 1ex 1V
8 rnpropg 0V1Vran0AB1AB=ABAB
9 6 7 8 mp2an ran0AB1AB=ABAB
10 9 a1i VWAVBVran0AB1AB=ABAB
11 dfsn2 AB=ABAB
12 10 11 eqtr4di VWAVBVran0AB1AB=AB
13 3 5 12 3eqtrd VWAVBVEdgG=AB