Metamath Proof Explorer


Theorem umgrbi

Description: Show that an unordered pair is a valid edge in a multigraph. (Contributed by AV, 9-Mar-2021)

Ref Expression
Hypotheses umgrbi.x XV
umgrbi.y YV
umgrbi.n XY
Assertion umgrbi XYx𝒫V|x=2

Proof

Step Hyp Ref Expression
1 umgrbi.x XV
2 umgrbi.y YV
3 umgrbi.n XY
4 prssi XVYVXYV
5 1 2 4 mp2an XYV
6 prex XYV
7 6 elpw XY𝒫VXYV
8 5 7 mpbir XY𝒫V
9 hashprg XVYVXYXY=2
10 3 9 mpbii XVYVXY=2
11 1 2 10 mp2an XY=2
12 fveqeq2 x=XYx=2XY=2
13 12 elrab XYx𝒫V|x=2XY𝒫VXY=2
14 8 11 13 mpbir2an XYx𝒫V|x=2