Metamath Proof Explorer


Theorem umgrunop

Description: The union of two multigraphs (with the same vertex set): If <. V , E >. and <. V , F >. are multigraphs, then <. V , E u. F >. is a multigraph (the vertex set stays the same, but the edges from both graphs are kept). (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by AV, 25-Nov-2020)

Ref Expression
Hypotheses umgrun.g φGUMGraph
umgrun.h φHUMGraph
umgrun.e E=iEdgG
umgrun.f F=iEdgH
umgrun.vg V=VtxG
umgrun.vh φVtxH=V
umgrun.i φdomEdomF=
Assertion umgrunop φVEFUMGraph

Proof

Step Hyp Ref Expression
1 umgrun.g φGUMGraph
2 umgrun.h φHUMGraph
3 umgrun.e E=iEdgG
4 umgrun.f F=iEdgH
5 umgrun.vg V=VtxG
6 umgrun.vh φVtxH=V
7 umgrun.i φdomEdomF=
8 opex VEFV
9 8 a1i φVEFV
10 5 fvexi VV
11 3 fvexi EV
12 4 fvexi FV
13 11 12 unex EFV
14 10 13 pm3.2i VVEFV
15 opvtxfv VVEFVVtxVEF=V
16 14 15 mp1i φVtxVEF=V
17 opiedgfv VVEFViEdgVEF=EF
18 14 17 mp1i φiEdgVEF=EF
19 1 2 3 4 5 6 7 9 16 18 umgrun φVEFUMGraph