Metamath Proof Explorer


Theorem umgrunop

Description: The union of two multigraphs (with the same vertex set): If <. V , E >. and <. V , F >. are multigraphs, then <. V , E u. F >. is a multigraph (the vertex set stays the same, but the edges from both graphs are kept). (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by AV, 25-Nov-2020)

Ref Expression
Hypotheses umgrun.g
|- ( ph -> G e. UMGraph )
umgrun.h
|- ( ph -> H e. UMGraph )
umgrun.e
|- E = ( iEdg ` G )
umgrun.f
|- F = ( iEdg ` H )
umgrun.vg
|- V = ( Vtx ` G )
umgrun.vh
|- ( ph -> ( Vtx ` H ) = V )
umgrun.i
|- ( ph -> ( dom E i^i dom F ) = (/) )
Assertion umgrunop
|- ( ph -> <. V , ( E u. F ) >. e. UMGraph )

Proof

Step Hyp Ref Expression
1 umgrun.g
 |-  ( ph -> G e. UMGraph )
2 umgrun.h
 |-  ( ph -> H e. UMGraph )
3 umgrun.e
 |-  E = ( iEdg ` G )
4 umgrun.f
 |-  F = ( iEdg ` H )
5 umgrun.vg
 |-  V = ( Vtx ` G )
6 umgrun.vh
 |-  ( ph -> ( Vtx ` H ) = V )
7 umgrun.i
 |-  ( ph -> ( dom E i^i dom F ) = (/) )
8 opex
 |-  <. V , ( E u. F ) >. e. _V
9 8 a1i
 |-  ( ph -> <. V , ( E u. F ) >. e. _V )
10 5 fvexi
 |-  V e. _V
11 3 fvexi
 |-  E e. _V
12 4 fvexi
 |-  F e. _V
13 11 12 unex
 |-  ( E u. F ) e. _V
14 10 13 pm3.2i
 |-  ( V e. _V /\ ( E u. F ) e. _V )
15 opvtxfv
 |-  ( ( V e. _V /\ ( E u. F ) e. _V ) -> ( Vtx ` <. V , ( E u. F ) >. ) = V )
16 14 15 mp1i
 |-  ( ph -> ( Vtx ` <. V , ( E u. F ) >. ) = V )
17 opiedgfv
 |-  ( ( V e. _V /\ ( E u. F ) e. _V ) -> ( iEdg ` <. V , ( E u. F ) >. ) = ( E u. F ) )
18 14 17 mp1i
 |-  ( ph -> ( iEdg ` <. V , ( E u. F ) >. ) = ( E u. F ) )
19 1 2 3 4 5 6 7 9 16 18 umgrun
 |-  ( ph -> <. V , ( E u. F ) >. e. UMGraph )