Metamath Proof Explorer


Theorem uneqri

Description: Inference from membership to union. (Contributed by NM, 21-Jun-1993)

Ref Expression
Hypothesis uneqri.1 xAxBxC
Assertion uneqri AB=C

Proof

Step Hyp Ref Expression
1 uneqri.1 xAxBxC
2 elun xABxAxB
3 2 1 bitri xABxC
4 3 eqriv AB=C