Metamath Proof Explorer


Theorem uniex2

Description: The Axiom of Union using the standard abbreviation for union. Given any set x , its union y exists. (Contributed by NM, 4-Jun-2006)

Ref Expression
Assertion uniex2 yy=x

Proof

Step Hyp Ref Expression
1 ax-un yzwzwwxzy
2 eluni zxwzwwx
3 2 imbi1i zxzywzwwxzy
4 3 albii zzxzyzwzwwxzy
5 4 exbii yzzxzyyzwzwwxzy
6 1 5 mpbir yzzxzy
7 6 bm1.3ii yzzyzx
8 dfcleq y=xzzyzx
9 8 exbii yy=xyzzyzx
10 7 9 mpbir yy=x