Description: The Axiom of Union using the standard abbreviation for union. Given any set x , its union y exists. (Contributed by NM, 4-Jun-2006)
Ref | Expression | ||
---|---|---|---|
Assertion | uniex2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-un | |
|
2 | eluni | |
|
3 | 2 | imbi1i | |
4 | 3 | albii | |
5 | 4 | exbii | |
6 | 1 5 | mpbir | |
7 | 6 | bm1.3ii | |
8 | dfcleq | |
|
9 | 8 | exbii | |
10 | 7 9 | mpbir | |