Metamath Proof Explorer


Theorem unisn3

Description: Union of a singleton in the form of a restricted class abstraction. (Contributed by NM, 3-Jul-2008)

Ref Expression
Assertion unisn3 ABxB|x=A=A

Proof

Step Hyp Ref Expression
1 rabsn ABxB|x=A=A
2 1 unieqd ABxB|x=A=A
3 unisng ABA=A
4 2 3 eqtrd ABxB|x=A=A