Metamath Proof Explorer


Theorem unitadd

Description: Theorem used in conjunction with decaddc to absorb carry when generating n-digit addition synthetic proofs. (Contributed by Stanislas Polu, 7-Apr-2020)

Ref Expression
Hypotheses unitadd.1 A + B = F
unitadd.2 C + 1 = B
unitadd.3 A 0
unitadd.4 C 0
Assertion unitadd A + C + 1 = F

Proof

Step Hyp Ref Expression
1 unitadd.1 A + B = F
2 unitadd.2 C + 1 = B
3 unitadd.3 A 0
4 unitadd.4 C 0
5 3 nn0cni A
6 4 nn0cni C
7 ax-1cn 1
8 5 6 7 addassi A + C + 1 = A + C + 1
9 2 eqcomi B = C + 1
10 9 oveq2i A + B = A + C + 1
11 10 1 eqtr3i A + C + 1 = F
12 8 11 eqtri A + C + 1 = F