Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Stanislas Polu
N-Digit Addition Proof Generator
unitadd
Metamath Proof Explorer
Description: Theorem used in conjunction with decaddc to absorb carry when
generating n-digit addition synthetic proofs. (Contributed by Stanislas
Polu , 7-Apr-2020)
Ref
Expression
Hypotheses
unitadd.1
⊢ A + B = F
unitadd.2
⊢ C + 1 = B
unitadd.3
⊢ A ∈ ℕ 0
unitadd.4
⊢ C ∈ ℕ 0
Assertion
unitadd
⊢ A + C + 1 = F
Proof
Step
Hyp
Ref
Expression
1
unitadd.1
⊢ A + B = F
2
unitadd.2
⊢ C + 1 = B
3
unitadd.3
⊢ A ∈ ℕ 0
4
unitadd.4
⊢ C ∈ ℕ 0
5
3
nn0cni
⊢ A ∈ ℂ
6
4
nn0cni
⊢ C ∈ ℂ
7
ax-1cn
⊢ 1 ∈ ℂ
8
5 6 7
addassi
⊢ A + C + 1 = A + C + 1
9
2
eqcomi
⊢ B = C + 1
10
9
oveq2i
⊢ A + B = A + C + 1
11
10 1
eqtr3i
⊢ A + C + 1 = F
12
8 11
eqtri
⊢ A + C + 1 = F