Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Stanislas Polu
N-Digit Addition Proof Generator
unitadd
Metamath Proof Explorer
Description: Theorem used in conjunction with decaddc to absorb carry when
generating n-digit addition synthetic proofs. (Contributed by Stanislas
Polu , 7-Apr-2020)
Ref
Expression
Hypotheses
unitadd.1
⊢ ( 𝐴 + 𝐵 ) = 𝐹
unitadd.2
⊢ ( 𝐶 + 1 ) = 𝐵
unitadd.3
⊢ 𝐴 ∈ ℕ0
unitadd.4
⊢ 𝐶 ∈ ℕ0
Assertion
unitadd
⊢ ( ( 𝐴 + 𝐶 ) + 1 ) = 𝐹
Proof
Step
Hyp
Ref
Expression
1
unitadd.1
⊢ ( 𝐴 + 𝐵 ) = 𝐹
2
unitadd.2
⊢ ( 𝐶 + 1 ) = 𝐵
3
unitadd.3
⊢ 𝐴 ∈ ℕ0
4
unitadd.4
⊢ 𝐶 ∈ ℕ0
5
3
nn0cni
⊢ 𝐴 ∈ ℂ
6
4
nn0cni
⊢ 𝐶 ∈ ℂ
7
ax-1cn
⊢ 1 ∈ ℂ
8
5 6 7
addassi
⊢ ( ( 𝐴 + 𝐶 ) + 1 ) = ( 𝐴 + ( 𝐶 + 1 ) )
9
2
eqcomi
⊢ 𝐵 = ( 𝐶 + 1 )
10
9
oveq2i
⊢ ( 𝐴 + 𝐵 ) = ( 𝐴 + ( 𝐶 + 1 ) )
11
10 1
eqtr3i
⊢ ( 𝐴 + ( 𝐶 + 1 ) ) = 𝐹
12
8 11
eqtri
⊢ ( ( 𝐴 + 𝐶 ) + 1 ) = 𝐹