Metamath Proof Explorer


Theorem unitadd

Description: Theorem used in conjunction with decaddc to absorb carry when generating n-digit addition synthetic proofs. (Contributed by Stanislas Polu, 7-Apr-2020)

Ref Expression
Hypotheses unitadd.1 ( 𝐴 + 𝐵 ) = 𝐹
unitadd.2 ( 𝐶 + 1 ) = 𝐵
unitadd.3 𝐴 ∈ ℕ0
unitadd.4 𝐶 ∈ ℕ0
Assertion unitadd ( ( 𝐴 + 𝐶 ) + 1 ) = 𝐹

Proof

Step Hyp Ref Expression
1 unitadd.1 ( 𝐴 + 𝐵 ) = 𝐹
2 unitadd.2 ( 𝐶 + 1 ) = 𝐵
3 unitadd.3 𝐴 ∈ ℕ0
4 unitadd.4 𝐶 ∈ ℕ0
5 3 nn0cni 𝐴 ∈ ℂ
6 4 nn0cni 𝐶 ∈ ℂ
7 ax-1cn 1 ∈ ℂ
8 5 6 7 addassi ( ( 𝐴 + 𝐶 ) + 1 ) = ( 𝐴 + ( 𝐶 + 1 ) )
9 2 eqcomi 𝐵 = ( 𝐶 + 1 )
10 9 oveq2i ( 𝐴 + 𝐵 ) = ( 𝐴 + ( 𝐶 + 1 ) )
11 10 1 eqtr3i ( 𝐴 + ( 𝐶 + 1 ) ) = 𝐹
12 8 11 eqtri ( ( 𝐴 + 𝐶 ) + 1 ) = 𝐹