Database SUPPLEMENTARY MATERIAL (USERS' MATHBOXES) Mathbox for Stanislas Polu N-Digit Addition Proof Generator unitadd  
				
		 
		
			
		 
		Description:   Theorem used in conjunction with decaddc  to absorb carry when
       generating n-digit addition synthetic proofs.  (Contributed by Stanislas
       Polu , 7-Apr-2020) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						unitadd.1 ⊢  ( 𝐴   +  𝐵  )  =  𝐹   
					
						unitadd.2 ⊢  ( 𝐶   +  1 )  =  𝐵   
					
						unitadd.3 ⊢  𝐴   ∈  ℕ0   
					
						unitadd.4 ⊢  𝐶   ∈  ℕ0   
				
					Assertion 
					unitadd ⊢   ( ( 𝐴   +  𝐶  )  +  1 )  =  𝐹   
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							unitadd.1 ⊢  ( 𝐴   +  𝐵  )  =  𝐹   
						
							2 
								
							 
							unitadd.2 ⊢  ( 𝐶   +  1 )  =  𝐵   
						
							3 
								
							 
							unitadd.3 ⊢  𝐴   ∈  ℕ0   
						
							4 
								
							 
							unitadd.4 ⊢  𝐶   ∈  ℕ0   
						
							5 
								3 
							 
							nn0cni ⊢  𝐴   ∈  ℂ  
						
							6 
								4 
							 
							nn0cni ⊢  𝐶   ∈  ℂ  
						
							7 
								
							 
							ax-1cn ⊢  1  ∈  ℂ  
						
							8 
								5  6  7 
							 
							addassi ⊢  ( ( 𝐴   +  𝐶  )  +  1 )  =  ( 𝐴   +  ( 𝐶   +  1 ) )  
						
							9 
								2 
							 
							eqcomi ⊢  𝐵   =  ( 𝐶   +  1 )  
						
							10 
								9 
							 
							oveq2i ⊢  ( 𝐴   +  𝐵  )  =  ( 𝐴   +  ( 𝐶   +  1 ) )  
						
							11 
								10  1 
							 
							eqtr3i ⊢  ( 𝐴   +  ( 𝐶   +  1 ) )  =  𝐹   
						
							12 
								8  11 
							 
							eqtri ⊢  ( ( 𝐴   +  𝐶  )  +  1 )  =  𝐹