Metamath Proof Explorer


Theorem unitadd

Description: Theorem used in conjunction with decaddc to absorb carry when generating n-digit addition synthetic proofs. (Contributed by Stanislas Polu, 7-Apr-2020)

Ref Expression
Hypotheses unitadd.1
|- ( A + B ) = F
unitadd.2
|- ( C + 1 ) = B
unitadd.3
|- A e. NN0
unitadd.4
|- C e. NN0
Assertion unitadd
|- ( ( A + C ) + 1 ) = F

Proof

Step Hyp Ref Expression
1 unitadd.1
 |-  ( A + B ) = F
2 unitadd.2
 |-  ( C + 1 ) = B
3 unitadd.3
 |-  A e. NN0
4 unitadd.4
 |-  C e. NN0
5 3 nn0cni
 |-  A e. CC
6 4 nn0cni
 |-  C e. CC
7 ax-1cn
 |-  1 e. CC
8 5 6 7 addassi
 |-  ( ( A + C ) + 1 ) = ( A + ( C + 1 ) )
9 2 eqcomi
 |-  B = ( C + 1 )
10 9 oveq2i
 |-  ( A + B ) = ( A + ( C + 1 ) )
11 10 1 eqtr3i
 |-  ( A + ( C + 1 ) ) = F
12 8 11 eqtri
 |-  ( ( A + C ) + 1 ) = F