Description: Theorem used in conjunction with decaddc to absorb carry when generating n-digit addition synthetic proofs. (Contributed by Stanislas Polu, 7-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | unitadd.1 | |- ( A + B ) = F |
|
| unitadd.2 | |- ( C + 1 ) = B |
||
| unitadd.3 | |- A e. NN0 |
||
| unitadd.4 | |- C e. NN0 |
||
| Assertion | unitadd | |- ( ( A + C ) + 1 ) = F |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unitadd.1 | |- ( A + B ) = F |
|
| 2 | unitadd.2 | |- ( C + 1 ) = B |
|
| 3 | unitadd.3 | |- A e. NN0 |
|
| 4 | unitadd.4 | |- C e. NN0 |
|
| 5 | 3 | nn0cni | |- A e. CC |
| 6 | 4 | nn0cni | |- C e. CC |
| 7 | ax-1cn | |- 1 e. CC |
|
| 8 | 5 6 7 | addassi | |- ( ( A + C ) + 1 ) = ( A + ( C + 1 ) ) |
| 9 | 2 | eqcomi | |- B = ( C + 1 ) |
| 10 | 9 | oveq2i | |- ( A + B ) = ( A + ( C + 1 ) ) |
| 11 | 10 1 | eqtr3i | |- ( A + ( C + 1 ) ) = F |
| 12 | 8 11 | eqtri | |- ( ( A + C ) + 1 ) = F |