Description: Theorem used in conjunction with decaddc to absorb carry when generating n-digit addition synthetic proofs. (Contributed by Stanislas Polu, 7-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | unitadd.1 | |- ( A + B ) = F | |
| unitadd.2 | |- ( C + 1 ) = B | ||
| unitadd.3 | |- A e. NN0 | ||
| unitadd.4 | |- C e. NN0 | ||
| Assertion | unitadd | |- ( ( A + C ) + 1 ) = F | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | unitadd.1 | |- ( A + B ) = F | |
| 2 | unitadd.2 | |- ( C + 1 ) = B | |
| 3 | unitadd.3 | |- A e. NN0 | |
| 4 | unitadd.4 | |- C e. NN0 | |
| 5 | 3 | nn0cni | |- A e. CC | 
| 6 | 4 | nn0cni | |- C e. CC | 
| 7 | ax-1cn | |- 1 e. CC | |
| 8 | 5 6 7 | addassi | |- ( ( A + C ) + 1 ) = ( A + ( C + 1 ) ) | 
| 9 | 2 | eqcomi | |- B = ( C + 1 ) | 
| 10 | 9 | oveq2i | |- ( A + B ) = ( A + ( C + 1 ) ) | 
| 11 | 10 1 | eqtr3i | |- ( A + ( C + 1 ) ) = F | 
| 12 | 8 11 | eqtri | |- ( ( A + C ) + 1 ) = F |