Description: A unit is an element of the base set. (Contributed by Mario Carneiro, 1-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | unitcl.1 | |
|
unitcl.2 | |
||
Assertion | unitcl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unitcl.1 | |
|
2 | unitcl.2 | |
|
3 | eqid | |
|
4 | eqid | |
|
5 | eqid | |
|
6 | eqid | |
|
7 | 2 3 4 5 6 | isunit | |
8 | 7 | simplbi | |
9 | 1 4 | dvdsrcl | |
10 | 8 9 | syl | |