Metamath Proof Explorer


Theorem unitgrpbas

Description: The base set of the group of units. (Contributed by Mario Carneiro, 25-Dec-2014)

Ref Expression
Hypotheses unitmulcl.1 U=UnitR
unitgrp.2 G=mulGrpR𝑠U
Assertion unitgrpbas U=BaseG

Proof

Step Hyp Ref Expression
1 unitmulcl.1 U=UnitR
2 unitgrp.2 G=mulGrpR𝑠U
3 eqid BaseR=BaseR
4 3 1 unitss UBaseR
5 eqid mulGrpR=mulGrpR
6 5 3 mgpbas BaseR=BasemulGrpR
7 2 6 ressbas2 UBaseRU=BaseG
8 4 7 ax-mp U=BaseG