Metamath Proof Explorer


Theorem unqsym1

Description: A symmetry with E! .

See negsym1 for more information. (Contributed by Anthony Hart, 6-Sep-2011)

Ref Expression
Assertion unqsym1 ∃! x ∃! x ∃! x φ

Proof

Step Hyp Ref Expression
1 neufal ¬ ∃! x
2 1 nex ¬ x ∃! x
3 euex ∃! x ∃! x x ∃! x
4 2 3 mto ¬ ∃! x ∃! x
5 4 pm2.21i ∃! x ∃! x ∃! x φ