Metamath Proof Explorer


Theorem unqsym1

Description: A symmetry with E! .

See negsym1 for more information. (Contributed by Anthony Hart, 6-Sep-2011)

Ref Expression
Assertion unqsym1
|- ( E! x E! x F. -> E! x ph )

Proof

Step Hyp Ref Expression
1 neufal
 |-  -. E! x F.
2 1 nex
 |-  -. E. x E! x F.
3 euex
 |-  ( E! x E! x F. -> E. x E! x F. )
4 2 3 mto
 |-  -. E! x E! x F.
5 4 pm2.21i
 |-  ( E! x E! x F. -> E! x ph )