Metamath Proof Explorer


Theorem unqsym1

Description: A symmetry with E! .

See negsym1 for more information. (Contributed by Anthony Hart, 6-Sep-2011)

Ref Expression
Assertion unqsym1 ( ∃! 𝑥 ∃! 𝑥 ⊥ → ∃! 𝑥 𝜑 )

Proof

Step Hyp Ref Expression
1 neufal ¬ ∃! 𝑥
2 1 nex ¬ ∃ 𝑥 ∃! 𝑥
3 euex ( ∃! 𝑥 ∃! 𝑥 ⊥ → ∃ 𝑥 ∃! 𝑥 ⊥ )
4 2 3 mto ¬ ∃! 𝑥 ∃! 𝑥
5 4 pm2.21i ( ∃! 𝑥 ∃! 𝑥 ⊥ → ∃! 𝑥 𝜑 )