Metamath Proof Explorer


Theorem amosym1

Description: A symmetry with E* .

See negsym1 for more information. (Contributed by Anthony Hart, 13-Sep-2011)

Ref Expression
Assertion amosym1 ( ∃* 𝑥 ∃* 𝑥 ⊥ → ∃* 𝑥 𝜑 )

Proof

Step Hyp Ref Expression
1 mofal ∃* 𝑥
2 1 a1i ( 𝜑 → ∃* 𝑥 ⊥ )
3 2 moimi ( ∃* 𝑥 ∃* 𝑥 ⊥ → ∃* 𝑥 𝜑 )