Metamath Proof Explorer


Theorem amosym1

Description: A symmetry with E* .

See negsym1 for more information. (Contributed by Anthony Hart, 13-Sep-2011)

Ref Expression
Assertion amosym1 ( ∃* 𝑥 ∃* 𝑥 ⊥ → ∃* 𝑥 𝜑 )

Proof

Step Hyp Ref Expression
1 moeu ( ∃* 𝑥 ∃* 𝑥 ⊥ ↔ ( ∃ 𝑥 ∃* 𝑥 ⊥ → ∃! 𝑥 ∃* 𝑥 ⊥ ) )
2 mofal ∃* 𝑥
3 19.8a ( ∃* 𝑥 ⊥ → ∃ 𝑥 ∃* 𝑥 ⊥ )
4 3 notnotd ( ∃* 𝑥 ⊥ → ¬ ¬ ∃ 𝑥 ∃* 𝑥 ⊥ )
5 2 4 ax-mp ¬ ¬ ∃ 𝑥 ∃* 𝑥
6 5 pm2.21i ( ¬ ∃ 𝑥 ∃* 𝑥 ⊥ → ∃* 𝑥 𝜑 )
7 2 notnoti ¬ ¬ ∃* 𝑥
8 7 nex ¬ ∃ 𝑥 ¬ ∃* 𝑥
9 eunex ( ∃! 𝑥 ∃* 𝑥 ⊥ → ∃ 𝑥 ¬ ∃* 𝑥 ⊥ )
10 8 9 mto ¬ ∃! 𝑥 ∃* 𝑥
11 10 pm2.21i ( ∃! 𝑥 ∃* 𝑥 ⊥ → ∃* 𝑥 𝜑 )
12 6 11 ja ( ( ∃ 𝑥 ∃* 𝑥 ⊥ → ∃! 𝑥 ∃* 𝑥 ⊥ ) → ∃* 𝑥 𝜑 )
13 1 12 sylbi ( ∃* 𝑥 ∃* 𝑥 ⊥ → ∃* 𝑥 𝜑 )