Metamath Proof Explorer


Theorem subsym1

Description: A symmetry with [ x / y ] .

See negsym1 for more information. (Contributed by Anthony Hart, 11-Sep-2011)

Ref Expression
Assertion subsym1 ( [ 𝑦 / 𝑥 ] [ 𝑦 / 𝑥 ] ⊥ → [ 𝑦 / 𝑥 ] 𝜑 )

Proof

Step Hyp Ref Expression
1 sbv ( [ 𝑦 / 𝑥 ] ⊥ ↔ ⊥ )
2 falim ( ⊥ → 𝜑 )
3 1 2 sylbi ( [ 𝑦 / 𝑥 ] ⊥ → 𝜑 )
4 3 sbimi ( [ 𝑦 / 𝑥 ] [ 𝑦 / 𝑥 ] ⊥ → [ 𝑦 / 𝑥 ] 𝜑 )