Metamath Proof Explorer


Theorem subsym1

Description: A symmetry with [ x / y ] .

See negsym1 for more information. (Contributed by Anthony Hart, 11-Sep-2011)

Ref Expression
Assertion subsym1 ( [ 𝑦 / 𝑥 ] [ 𝑦 / 𝑥 ] ⊥ → [ 𝑦 / 𝑥 ] 𝜑 )

Proof

Step Hyp Ref Expression
1 fal ¬ ⊥
2 1 intnan ¬ ( 𝑥 = 𝑦 ∧ ⊥ )
3 2 nex ¬ ∃ 𝑥 ( 𝑥 = 𝑦 ∧ ⊥ )
4 3 intnan ¬ ( ( 𝑥 = 𝑦 → ⊥ ) ∧ ∃ 𝑥 ( 𝑥 = 𝑦 ∧ ⊥ ) )
5 dfsb1 ( [ 𝑦 / 𝑥 ] ⊥ ↔ ( ( 𝑥 = 𝑦 → ⊥ ) ∧ ∃ 𝑥 ( 𝑥 = 𝑦 ∧ ⊥ ) ) )
6 4 5 mtbir ¬ [ 𝑦 / 𝑥 ] ⊥
7 6 intnan ¬ ( 𝑥 = 𝑦 ∧ [ 𝑦 / 𝑥 ] ⊥ )
8 7 nex ¬ ∃ 𝑥 ( 𝑥 = 𝑦 ∧ [ 𝑦 / 𝑥 ] ⊥ )
9 8 intnan ¬ ( ( 𝑥 = 𝑦 → [ 𝑦 / 𝑥 ] ⊥ ) ∧ ∃ 𝑥 ( 𝑥 = 𝑦 ∧ [ 𝑦 / 𝑥 ] ⊥ ) )
10 dfsb1 ( [ 𝑦 / 𝑥 ] [ 𝑦 / 𝑥 ] ⊥ ↔ ( ( 𝑥 = 𝑦 → [ 𝑦 / 𝑥 ] ⊥ ) ∧ ∃ 𝑥 ( 𝑥 = 𝑦 ∧ [ 𝑦 / 𝑥 ] ⊥ ) ) )
11 9 10 mtbir ¬ [ 𝑦 / 𝑥 ] [ 𝑦 / 𝑥 ] ⊥
12 11 pm2.21i ( [ 𝑦 / 𝑥 ] [ 𝑦 / 𝑥 ] ⊥ → [ 𝑦 / 𝑥 ] 𝜑 )