Description: A symmetry with [ x / y ] .
See negsym1 for more information. (Contributed by Anthony Hart, 11-Sep-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | subsym1 | ⊢ ( [ 𝑦 / 𝑥 ] [ 𝑦 / 𝑥 ] ⊥ → [ 𝑦 / 𝑥 ] 𝜑 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fal | ⊢ ¬ ⊥ | |
2 | 1 | intnan | ⊢ ¬ ( 𝑥 = 𝑦 ∧ ⊥ ) |
3 | 2 | nex | ⊢ ¬ ∃ 𝑥 ( 𝑥 = 𝑦 ∧ ⊥ ) |
4 | 3 | intnan | ⊢ ¬ ( ( 𝑥 = 𝑦 → ⊥ ) ∧ ∃ 𝑥 ( 𝑥 = 𝑦 ∧ ⊥ ) ) |
5 | dfsb1 | ⊢ ( [ 𝑦 / 𝑥 ] ⊥ ↔ ( ( 𝑥 = 𝑦 → ⊥ ) ∧ ∃ 𝑥 ( 𝑥 = 𝑦 ∧ ⊥ ) ) ) | |
6 | 4 5 | mtbir | ⊢ ¬ [ 𝑦 / 𝑥 ] ⊥ |
7 | 6 | intnan | ⊢ ¬ ( 𝑥 = 𝑦 ∧ [ 𝑦 / 𝑥 ] ⊥ ) |
8 | 7 | nex | ⊢ ¬ ∃ 𝑥 ( 𝑥 = 𝑦 ∧ [ 𝑦 / 𝑥 ] ⊥ ) |
9 | 8 | intnan | ⊢ ¬ ( ( 𝑥 = 𝑦 → [ 𝑦 / 𝑥 ] ⊥ ) ∧ ∃ 𝑥 ( 𝑥 = 𝑦 ∧ [ 𝑦 / 𝑥 ] ⊥ ) ) |
10 | dfsb1 | ⊢ ( [ 𝑦 / 𝑥 ] [ 𝑦 / 𝑥 ] ⊥ ↔ ( ( 𝑥 = 𝑦 → [ 𝑦 / 𝑥 ] ⊥ ) ∧ ∃ 𝑥 ( 𝑥 = 𝑦 ∧ [ 𝑦 / 𝑥 ] ⊥ ) ) ) | |
11 | 9 10 | mtbir | ⊢ ¬ [ 𝑦 / 𝑥 ] [ 𝑦 / 𝑥 ] ⊥ |
12 | 11 | pm2.21i | ⊢ ( [ 𝑦 / 𝑥 ] [ 𝑦 / 𝑥 ] ⊥ → [ 𝑦 / 𝑥 ] 𝜑 ) |