Description: A symmetry with [ x / y ] .
See negsym1 for more information. (Contributed by Anthony Hart, 11-Sep-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | subsym1 | |- ( [ y / x ] [ y / x ] F. -> [ y / x ] ph ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fal | |- -. F. |
|
2 | 1 | intnan | |- -. ( x = y /\ F. ) |
3 | 2 | nex | |- -. E. x ( x = y /\ F. ) |
4 | 3 | intnan | |- -. ( ( x = y -> F. ) /\ E. x ( x = y /\ F. ) ) |
5 | dfsb1 | |- ( [ y / x ] F. <-> ( ( x = y -> F. ) /\ E. x ( x = y /\ F. ) ) ) |
|
6 | 4 5 | mtbir | |- -. [ y / x ] F. |
7 | 6 | intnan | |- -. ( x = y /\ [ y / x ] F. ) |
8 | 7 | nex | |- -. E. x ( x = y /\ [ y / x ] F. ) |
9 | 8 | intnan | |- -. ( ( x = y -> [ y / x ] F. ) /\ E. x ( x = y /\ [ y / x ] F. ) ) |
10 | dfsb1 | |- ( [ y / x ] [ y / x ] F. <-> ( ( x = y -> [ y / x ] F. ) /\ E. x ( x = y /\ [ y / x ] F. ) ) ) |
|
11 | 9 10 | mtbir | |- -. [ y / x ] [ y / x ] F. |
12 | 11 | pm2.21i | |- ( [ y / x ] [ y / x ] F. -> [ y / x ] ph ) |