Metamath Proof Explorer


Theorem subsym1

Description: A symmetry with [ x / y ] .

See negsym1 for more information. (Contributed by Anthony Hart, 11-Sep-2011)

Ref Expression
Assertion subsym1
|- ( [ y / x ] [ y / x ] F. -> [ y / x ] ph )

Proof

Step Hyp Ref Expression
1 fal
 |-  -. F.
2 1 intnan
 |-  -. ( x = y /\ F. )
3 2 nex
 |-  -. E. x ( x = y /\ F. )
4 3 intnan
 |-  -. ( ( x = y -> F. ) /\ E. x ( x = y /\ F. ) )
5 dfsb1
 |-  ( [ y / x ] F. <-> ( ( x = y -> F. ) /\ E. x ( x = y /\ F. ) ) )
6 4 5 mtbir
 |-  -. [ y / x ] F.
7 6 intnan
 |-  -. ( x = y /\ [ y / x ] F. )
8 7 nex
 |-  -. E. x ( x = y /\ [ y / x ] F. )
9 8 intnan
 |-  -. ( ( x = y -> [ y / x ] F. ) /\ E. x ( x = y /\ [ y / x ] F. ) )
10 dfsb1
 |-  ( [ y / x ] [ y / x ] F. <-> ( ( x = y -> [ y / x ] F. ) /\ E. x ( x = y /\ [ y / x ] F. ) ) )
11 9 10 mtbir
 |-  -. [ y / x ] [ y / x ] F.
12 11 pm2.21i
 |-  ( [ y / x ] [ y / x ] F. -> [ y / x ] ph )