Metamath Proof Explorer


Theorem subsym1

Description: A symmetry with [ x / y ] .

See negsym1 for more information. (Contributed by Anthony Hart, 11-Sep-2011)

Ref Expression
Assertion subsym1
|- ( [ y / x ] [ y / x ] F. -> [ y / x ] ph )

Proof

Step Hyp Ref Expression
1 sbv
 |-  ( [ y / x ] F. <-> F. )
2 falim
 |-  ( F. -> ph )
3 1 2 sylbi
 |-  ( [ y / x ] F. -> ph )
4 3 sbimi
 |-  ( [ y / x ] [ y / x ] F. -> [ y / x ] ph )