Metamath Proof Explorer


Theorem amosym1

Description: A symmetry with E* .

See negsym1 for more information. (Contributed by Anthony Hart, 13-Sep-2011)

Ref Expression
Assertion amosym1
|- ( E* x E* x F. -> E* x ph )

Proof

Step Hyp Ref Expression
1 mofal
 |-  E* x F.
2 1 a1i
 |-  ( ph -> E* x F. )
3 2 moimi
 |-  ( E* x E* x F. -> E* x ph )