Metamath Proof Explorer


Theorem unssi

Description: An inference showing the union of two subclasses is a subclass. (Contributed by Raph Levien, 10-Dec-2002)

Ref Expression
Hypotheses unssi.1 AC
unssi.2 BC
Assertion unssi ABC

Proof

Step Hyp Ref Expression
1 unssi.1 AC
2 unssi.2 BC
3 1 2 pm3.2i ACBC
4 unss ACBCABC
5 3 4 mpbi ABC