Metamath Proof Explorer


Theorem upgrres1lem1

Description: Lemma 1 for upgrres1 . (Contributed by AV, 7-Nov-2020)

Ref Expression
Hypotheses upgrres1.v V=VtxG
upgrres1.e E=EdgG
upgrres1.f F=eE|Ne
Assertion upgrres1lem1 VNVIFV

Proof

Step Hyp Ref Expression
1 upgrres1.v V=VtxG
2 upgrres1.e E=EdgG
3 upgrres1.f F=eE|Ne
4 1 fvexi VV
5 4 difexi VNV
6 2 fvexi EV
7 3 6 rabex2 FV
8 resiexg FVIFV
9 7 8 ax-mp IFV
10 5 9 pm3.2i VNVIFV