Metamath Proof Explorer


Theorem umgrres1lem

Description: Lemma for umgrres1 . (Contributed by AV, 27-Nov-2020)

Ref Expression
Hypotheses upgrres1.v V = Vtx G
upgrres1.e E = Edg G
upgrres1.f F = e E | N e
Assertion umgrres1lem G UMGraph N V ran I F p 𝒫 V N | p = 2

Proof

Step Hyp Ref Expression
1 upgrres1.v V = Vtx G
2 upgrres1.e E = Edg G
3 upgrres1.f F = e E | N e
4 rnresi ran I F = F
5 simpr G UMGraph N V e E e E
6 5 adantr G UMGraph N V e E N e e E
7 umgruhgr G UMGraph G UHGraph
8 2 eleq2i e E e Edg G
9 8 biimpi e E e Edg G
10 edguhgr G UHGraph e Edg G e 𝒫 Vtx G
11 elpwi e 𝒫 Vtx G e Vtx G
12 11 1 sseqtrrdi e 𝒫 Vtx G e V
13 10 12 syl G UHGraph e Edg G e V
14 7 9 13 syl2an G UMGraph e E e V
15 14 ad4ant13 G UMGraph N V e E N e e V
16 simpr G UMGraph N V e E N e N e
17 elpwdifsn e E e V N e e 𝒫 V N
18 6 15 16 17 syl3anc G UMGraph N V e E N e e 𝒫 V N
19 18 ex G UMGraph N V e E N e e 𝒫 V N
20 19 ralrimiva G UMGraph N V e E N e e 𝒫 V N
21 rabss e E | N e 𝒫 V N e E N e e 𝒫 V N
22 20 21 sylibr G UMGraph N V e E | N e 𝒫 V N
23 3 22 eqsstrid G UMGraph N V F 𝒫 V N
24 elrabi p e E | N e p E
25 24 2 eleqtrdi p e E | N e p Edg G
26 edgumgr G UMGraph p Edg G p 𝒫 Vtx G p = 2
27 26 simprd G UMGraph p Edg G p = 2
28 27 ex G UMGraph p Edg G p = 2
29 28 adantr G UMGraph N V p Edg G p = 2
30 25 29 syl5com p e E | N e G UMGraph N V p = 2
31 30 3 eleq2s p F G UMGraph N V p = 2
32 31 impcom G UMGraph N V p F p = 2
33 23 32 ssrabdv G UMGraph N V F p 𝒫 V N | p = 2
34 4 33 eqsstrid G UMGraph N V ran I F p 𝒫 V N | p = 2