Metamath Proof Explorer


Theorem umgrres1lem

Description: Lemma for umgrres1 . (Contributed by AV, 27-Nov-2020)

Ref Expression
Hypotheses upgrres1.v V=VtxG
upgrres1.e E=EdgG
upgrres1.f F=eE|Ne
Assertion umgrres1lem GUMGraphNVranIFp𝒫VN|p=2

Proof

Step Hyp Ref Expression
1 upgrres1.v V=VtxG
2 upgrres1.e E=EdgG
3 upgrres1.f F=eE|Ne
4 rnresi ranIF=F
5 simpr GUMGraphNVeEeE
6 5 adantr GUMGraphNVeENeeE
7 umgruhgr GUMGraphGUHGraph
8 2 eleq2i eEeEdgG
9 8 biimpi eEeEdgG
10 edguhgr GUHGrapheEdgGe𝒫VtxG
11 elpwi e𝒫VtxGeVtxG
12 11 1 sseqtrrdi e𝒫VtxGeV
13 10 12 syl GUHGrapheEdgGeV
14 7 9 13 syl2an GUMGrapheEeV
15 14 ad4ant13 GUMGraphNVeENeeV
16 simpr GUMGraphNVeENeNe
17 elpwdifsn eEeVNee𝒫VN
18 6 15 16 17 syl3anc GUMGraphNVeENee𝒫VN
19 18 ex GUMGraphNVeENee𝒫VN
20 19 ralrimiva GUMGraphNVeENee𝒫VN
21 rabss eE|Ne𝒫VNeENee𝒫VN
22 20 21 sylibr GUMGraphNVeE|Ne𝒫VN
23 3 22 eqsstrid GUMGraphNVF𝒫VN
24 elrabi peE|NepE
25 24 2 eleqtrdi peE|NepEdgG
26 edgumgr GUMGraphpEdgGp𝒫VtxGp=2
27 26 simprd GUMGraphpEdgGp=2
28 27 ex GUMGraphpEdgGp=2
29 28 adantr GUMGraphNVpEdgGp=2
30 25 29 syl5com peE|NeGUMGraphNVp=2
31 30 3 eleq2s pFGUMGraphNVp=2
32 31 impcom GUMGraphNVpFp=2
33 23 32 ssrabdv GUMGraphNVFp𝒫VN|p=2
34 4 33 eqsstrid GUMGraphNVranIFp𝒫VN|p=2