Step |
Hyp |
Ref |
Expression |
1 |
|
upgrres1.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
upgrres1.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
3 |
|
upgrres1.f |
⊢ 𝐹 = { 𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒 } |
4 |
|
rnresi |
⊢ ran ( I ↾ 𝐹 ) = 𝐹 |
5 |
|
simpr |
⊢ ( ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑒 ∈ 𝐸 ) → 𝑒 ∈ 𝐸 ) |
6 |
5
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑒 ∈ 𝐸 ) ∧ 𝑁 ∉ 𝑒 ) → 𝑒 ∈ 𝐸 ) |
7 |
|
umgruhgr |
⊢ ( 𝐺 ∈ UMGraph → 𝐺 ∈ UHGraph ) |
8 |
2
|
eleq2i |
⊢ ( 𝑒 ∈ 𝐸 ↔ 𝑒 ∈ ( Edg ‘ 𝐺 ) ) |
9 |
8
|
biimpi |
⊢ ( 𝑒 ∈ 𝐸 → 𝑒 ∈ ( Edg ‘ 𝐺 ) ) |
10 |
|
edguhgr |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑒 ∈ ( Edg ‘ 𝐺 ) ) → 𝑒 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ) |
11 |
|
elpwi |
⊢ ( 𝑒 ∈ 𝒫 ( Vtx ‘ 𝐺 ) → 𝑒 ⊆ ( Vtx ‘ 𝐺 ) ) |
12 |
11 1
|
sseqtrrdi |
⊢ ( 𝑒 ∈ 𝒫 ( Vtx ‘ 𝐺 ) → 𝑒 ⊆ 𝑉 ) |
13 |
10 12
|
syl |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑒 ∈ ( Edg ‘ 𝐺 ) ) → 𝑒 ⊆ 𝑉 ) |
14 |
7 9 13
|
syl2an |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑒 ∈ 𝐸 ) → 𝑒 ⊆ 𝑉 ) |
15 |
14
|
ad4ant13 |
⊢ ( ( ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑒 ∈ 𝐸 ) ∧ 𝑁 ∉ 𝑒 ) → 𝑒 ⊆ 𝑉 ) |
16 |
|
simpr |
⊢ ( ( ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑒 ∈ 𝐸 ) ∧ 𝑁 ∉ 𝑒 ) → 𝑁 ∉ 𝑒 ) |
17 |
|
elpwdifsn |
⊢ ( ( 𝑒 ∈ 𝐸 ∧ 𝑒 ⊆ 𝑉 ∧ 𝑁 ∉ 𝑒 ) → 𝑒 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ) |
18 |
6 15 16 17
|
syl3anc |
⊢ ( ( ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑒 ∈ 𝐸 ) ∧ 𝑁 ∉ 𝑒 ) → 𝑒 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ) |
19 |
18
|
ex |
⊢ ( ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑒 ∈ 𝐸 ) → ( 𝑁 ∉ 𝑒 → 𝑒 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ) ) |
20 |
19
|
ralrimiva |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉 ) → ∀ 𝑒 ∈ 𝐸 ( 𝑁 ∉ 𝑒 → 𝑒 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ) ) |
21 |
|
rabss |
⊢ ( { 𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒 } ⊆ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ↔ ∀ 𝑒 ∈ 𝐸 ( 𝑁 ∉ 𝑒 → 𝑒 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ) ) |
22 |
20 21
|
sylibr |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉 ) → { 𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒 } ⊆ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ) |
23 |
3 22
|
eqsstrid |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉 ) → 𝐹 ⊆ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ) |
24 |
|
elrabi |
⊢ ( 𝑝 ∈ { 𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒 } → 𝑝 ∈ 𝐸 ) |
25 |
24 2
|
eleqtrdi |
⊢ ( 𝑝 ∈ { 𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒 } → 𝑝 ∈ ( Edg ‘ 𝐺 ) ) |
26 |
|
edgumgr |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑝 ∈ ( Edg ‘ 𝐺 ) ) → ( 𝑝 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑝 ) = 2 ) ) |
27 |
26
|
simprd |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑝 ∈ ( Edg ‘ 𝐺 ) ) → ( ♯ ‘ 𝑝 ) = 2 ) |
28 |
27
|
ex |
⊢ ( 𝐺 ∈ UMGraph → ( 𝑝 ∈ ( Edg ‘ 𝐺 ) → ( ♯ ‘ 𝑝 ) = 2 ) ) |
29 |
28
|
adantr |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝑝 ∈ ( Edg ‘ 𝐺 ) → ( ♯ ‘ 𝑝 ) = 2 ) ) |
30 |
25 29
|
syl5com |
⊢ ( 𝑝 ∈ { 𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒 } → ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉 ) → ( ♯ ‘ 𝑝 ) = 2 ) ) |
31 |
30 3
|
eleq2s |
⊢ ( 𝑝 ∈ 𝐹 → ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉 ) → ( ♯ ‘ 𝑝 ) = 2 ) ) |
32 |
31
|
impcom |
⊢ ( ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑝 ∈ 𝐹 ) → ( ♯ ‘ 𝑝 ) = 2 ) |
33 |
23 32
|
ssrabdv |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉 ) → 𝐹 ⊆ { 𝑝 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∣ ( ♯ ‘ 𝑝 ) = 2 } ) |
34 |
4 33
|
eqsstrid |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉 ) → ran ( I ↾ 𝐹 ) ⊆ { 𝑝 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∣ ( ♯ ‘ 𝑝 ) = 2 } ) |