Metamath Proof Explorer


Theorem umgrres1lem

Description: Lemma for umgrres1 . (Contributed by AV, 27-Nov-2020)

Ref Expression
Hypotheses upgrres1.v 𝑉 = ( Vtx ‘ 𝐺 )
upgrres1.e 𝐸 = ( Edg ‘ 𝐺 )
upgrres1.f 𝐹 = { 𝑒𝐸𝑁𝑒 }
Assertion umgrres1lem ( ( 𝐺 ∈ UMGraph ∧ 𝑁𝑉 ) → ran ( I ↾ 𝐹 ) ⊆ { 𝑝 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∣ ( ♯ ‘ 𝑝 ) = 2 } )

Proof

Step Hyp Ref Expression
1 upgrres1.v 𝑉 = ( Vtx ‘ 𝐺 )
2 upgrres1.e 𝐸 = ( Edg ‘ 𝐺 )
3 upgrres1.f 𝐹 = { 𝑒𝐸𝑁𝑒 }
4 rnresi ran ( I ↾ 𝐹 ) = 𝐹
5 simpr ( ( ( 𝐺 ∈ UMGraph ∧ 𝑁𝑉 ) ∧ 𝑒𝐸 ) → 𝑒𝐸 )
6 5 adantr ( ( ( ( 𝐺 ∈ UMGraph ∧ 𝑁𝑉 ) ∧ 𝑒𝐸 ) ∧ 𝑁𝑒 ) → 𝑒𝐸 )
7 umgruhgr ( 𝐺 ∈ UMGraph → 𝐺 ∈ UHGraph )
8 2 eleq2i ( 𝑒𝐸𝑒 ∈ ( Edg ‘ 𝐺 ) )
9 8 biimpi ( 𝑒𝐸𝑒 ∈ ( Edg ‘ 𝐺 ) )
10 edguhgr ( ( 𝐺 ∈ UHGraph ∧ 𝑒 ∈ ( Edg ‘ 𝐺 ) ) → 𝑒 ∈ 𝒫 ( Vtx ‘ 𝐺 ) )
11 elpwi ( 𝑒 ∈ 𝒫 ( Vtx ‘ 𝐺 ) → 𝑒 ⊆ ( Vtx ‘ 𝐺 ) )
12 11 1 sseqtrrdi ( 𝑒 ∈ 𝒫 ( Vtx ‘ 𝐺 ) → 𝑒𝑉 )
13 10 12 syl ( ( 𝐺 ∈ UHGraph ∧ 𝑒 ∈ ( Edg ‘ 𝐺 ) ) → 𝑒𝑉 )
14 7 9 13 syl2an ( ( 𝐺 ∈ UMGraph ∧ 𝑒𝐸 ) → 𝑒𝑉 )
15 14 ad4ant13 ( ( ( ( 𝐺 ∈ UMGraph ∧ 𝑁𝑉 ) ∧ 𝑒𝐸 ) ∧ 𝑁𝑒 ) → 𝑒𝑉 )
16 simpr ( ( ( ( 𝐺 ∈ UMGraph ∧ 𝑁𝑉 ) ∧ 𝑒𝐸 ) ∧ 𝑁𝑒 ) → 𝑁𝑒 )
17 elpwdifsn ( ( 𝑒𝐸𝑒𝑉𝑁𝑒 ) → 𝑒 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) )
18 6 15 16 17 syl3anc ( ( ( ( 𝐺 ∈ UMGraph ∧ 𝑁𝑉 ) ∧ 𝑒𝐸 ) ∧ 𝑁𝑒 ) → 𝑒 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) )
19 18 ex ( ( ( 𝐺 ∈ UMGraph ∧ 𝑁𝑉 ) ∧ 𝑒𝐸 ) → ( 𝑁𝑒𝑒 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ) )
20 19 ralrimiva ( ( 𝐺 ∈ UMGraph ∧ 𝑁𝑉 ) → ∀ 𝑒𝐸 ( 𝑁𝑒𝑒 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ) )
21 rabss ( { 𝑒𝐸𝑁𝑒 } ⊆ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ↔ ∀ 𝑒𝐸 ( 𝑁𝑒𝑒 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ) )
22 20 21 sylibr ( ( 𝐺 ∈ UMGraph ∧ 𝑁𝑉 ) → { 𝑒𝐸𝑁𝑒 } ⊆ 𝒫 ( 𝑉 ∖ { 𝑁 } ) )
23 3 22 eqsstrid ( ( 𝐺 ∈ UMGraph ∧ 𝑁𝑉 ) → 𝐹 ⊆ 𝒫 ( 𝑉 ∖ { 𝑁 } ) )
24 elrabi ( 𝑝 ∈ { 𝑒𝐸𝑁𝑒 } → 𝑝𝐸 )
25 24 2 eleqtrdi ( 𝑝 ∈ { 𝑒𝐸𝑁𝑒 } → 𝑝 ∈ ( Edg ‘ 𝐺 ) )
26 edgumgr ( ( 𝐺 ∈ UMGraph ∧ 𝑝 ∈ ( Edg ‘ 𝐺 ) ) → ( 𝑝 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑝 ) = 2 ) )
27 26 simprd ( ( 𝐺 ∈ UMGraph ∧ 𝑝 ∈ ( Edg ‘ 𝐺 ) ) → ( ♯ ‘ 𝑝 ) = 2 )
28 27 ex ( 𝐺 ∈ UMGraph → ( 𝑝 ∈ ( Edg ‘ 𝐺 ) → ( ♯ ‘ 𝑝 ) = 2 ) )
29 28 adantr ( ( 𝐺 ∈ UMGraph ∧ 𝑁𝑉 ) → ( 𝑝 ∈ ( Edg ‘ 𝐺 ) → ( ♯ ‘ 𝑝 ) = 2 ) )
30 25 29 syl5com ( 𝑝 ∈ { 𝑒𝐸𝑁𝑒 } → ( ( 𝐺 ∈ UMGraph ∧ 𝑁𝑉 ) → ( ♯ ‘ 𝑝 ) = 2 ) )
31 30 3 eleq2s ( 𝑝𝐹 → ( ( 𝐺 ∈ UMGraph ∧ 𝑁𝑉 ) → ( ♯ ‘ 𝑝 ) = 2 ) )
32 31 impcom ( ( ( 𝐺 ∈ UMGraph ∧ 𝑁𝑉 ) ∧ 𝑝𝐹 ) → ( ♯ ‘ 𝑝 ) = 2 )
33 23 32 ssrabdv ( ( 𝐺 ∈ UMGraph ∧ 𝑁𝑉 ) → 𝐹 ⊆ { 𝑝 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∣ ( ♯ ‘ 𝑝 ) = 2 } )
34 4 33 eqsstrid ( ( 𝐺 ∈ UMGraph ∧ 𝑁𝑉 ) → ran ( I ↾ 𝐹 ) ⊆ { 𝑝 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∣ ( ♯ ‘ 𝑝 ) = 2 } )