| Step |
Hyp |
Ref |
Expression |
| 1 |
|
upgrres1.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 2 |
|
upgrres1.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
| 3 |
|
upgrres1.f |
⊢ 𝐹 = { 𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒 } |
| 4 |
|
upgrres1.s |
⊢ 𝑆 = 〈 ( 𝑉 ∖ { 𝑁 } ) , ( I ↾ 𝐹 ) 〉 |
| 5 |
|
f1oi |
⊢ ( I ↾ 𝐹 ) : 𝐹 –1-1-onto→ 𝐹 |
| 6 |
|
f1of |
⊢ ( ( I ↾ 𝐹 ) : 𝐹 –1-1-onto→ 𝐹 → ( I ↾ 𝐹 ) : 𝐹 ⟶ 𝐹 ) |
| 7 |
5 6
|
mp1i |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉 ) → ( I ↾ 𝐹 ) : 𝐹 ⟶ 𝐹 ) |
| 8 |
7
|
ffdmd |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉 ) → ( I ↾ 𝐹 ) : dom ( I ↾ 𝐹 ) ⟶ 𝐹 ) |
| 9 |
|
rnresi |
⊢ ran ( I ↾ 𝐹 ) = 𝐹 |
| 10 |
1 2 3
|
umgrres1lem |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉 ) → ran ( I ↾ 𝐹 ) ⊆ { 𝑝 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∣ ( ♯ ‘ 𝑝 ) = 2 } ) |
| 11 |
9 10
|
eqsstrrid |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉 ) → 𝐹 ⊆ { 𝑝 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∣ ( ♯ ‘ 𝑝 ) = 2 } ) |
| 12 |
8 11
|
fssd |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉 ) → ( I ↾ 𝐹 ) : dom ( I ↾ 𝐹 ) ⟶ { 𝑝 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∣ ( ♯ ‘ 𝑝 ) = 2 } ) |
| 13 |
|
opex |
⊢ 〈 ( 𝑉 ∖ { 𝑁 } ) , ( I ↾ 𝐹 ) 〉 ∈ V |
| 14 |
4 13
|
eqeltri |
⊢ 𝑆 ∈ V |
| 15 |
1 2 3 4
|
upgrres1lem2 |
⊢ ( Vtx ‘ 𝑆 ) = ( 𝑉 ∖ { 𝑁 } ) |
| 16 |
15
|
eqcomi |
⊢ ( 𝑉 ∖ { 𝑁 } ) = ( Vtx ‘ 𝑆 ) |
| 17 |
1 2 3 4
|
upgrres1lem3 |
⊢ ( iEdg ‘ 𝑆 ) = ( I ↾ 𝐹 ) |
| 18 |
17
|
eqcomi |
⊢ ( I ↾ 𝐹 ) = ( iEdg ‘ 𝑆 ) |
| 19 |
16 18
|
isumgrs |
⊢ ( 𝑆 ∈ V → ( 𝑆 ∈ UMGraph ↔ ( I ↾ 𝐹 ) : dom ( I ↾ 𝐹 ) ⟶ { 𝑝 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∣ ( ♯ ‘ 𝑝 ) = 2 } ) ) |
| 20 |
14 19
|
mp1i |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝑆 ∈ UMGraph ↔ ( I ↾ 𝐹 ) : dom ( I ↾ 𝐹 ) ⟶ { 𝑝 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∣ ( ♯ ‘ 𝑝 ) = 2 } ) ) |
| 21 |
12 20
|
mpbird |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉 ) → 𝑆 ∈ UMGraph ) |