Metamath Proof Explorer


Theorem umgrres1

Description: A multigraph obtained by removing one vertex and all edges incident with this vertex is a multigraph. Remark: This graph is not a subgraph of the original graph in the sense of df-subgr since the domains of the edge functions may not be compatible. (Contributed by AV, 27-Nov-2020)

Ref Expression
Hypotheses upgrres1.v
|- V = ( Vtx ` G )
upgrres1.e
|- E = ( Edg ` G )
upgrres1.f
|- F = { e e. E | N e/ e }
upgrres1.s
|- S = <. ( V \ { N } ) , ( _I |` F ) >.
Assertion umgrres1
|- ( ( G e. UMGraph /\ N e. V ) -> S e. UMGraph )

Proof

Step Hyp Ref Expression
1 upgrres1.v
 |-  V = ( Vtx ` G )
2 upgrres1.e
 |-  E = ( Edg ` G )
3 upgrres1.f
 |-  F = { e e. E | N e/ e }
4 upgrres1.s
 |-  S = <. ( V \ { N } ) , ( _I |` F ) >.
5 f1oi
 |-  ( _I |` F ) : F -1-1-onto-> F
6 f1of
 |-  ( ( _I |` F ) : F -1-1-onto-> F -> ( _I |` F ) : F --> F )
7 5 6 mp1i
 |-  ( ( G e. UMGraph /\ N e. V ) -> ( _I |` F ) : F --> F )
8 7 ffdmd
 |-  ( ( G e. UMGraph /\ N e. V ) -> ( _I |` F ) : dom ( _I |` F ) --> F )
9 rnresi
 |-  ran ( _I |` F ) = F
10 1 2 3 umgrres1lem
 |-  ( ( G e. UMGraph /\ N e. V ) -> ran ( _I |` F ) C_ { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } )
11 9 10 eqsstrrid
 |-  ( ( G e. UMGraph /\ N e. V ) -> F C_ { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } )
12 8 11 fssd
 |-  ( ( G e. UMGraph /\ N e. V ) -> ( _I |` F ) : dom ( _I |` F ) --> { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } )
13 opex
 |-  <. ( V \ { N } ) , ( _I |` F ) >. e. _V
14 4 13 eqeltri
 |-  S e. _V
15 1 2 3 4 upgrres1lem2
 |-  ( Vtx ` S ) = ( V \ { N } )
16 15 eqcomi
 |-  ( V \ { N } ) = ( Vtx ` S )
17 1 2 3 4 upgrres1lem3
 |-  ( iEdg ` S ) = ( _I |` F )
18 17 eqcomi
 |-  ( _I |` F ) = ( iEdg ` S )
19 16 18 isumgrs
 |-  ( S e. _V -> ( S e. UMGraph <-> ( _I |` F ) : dom ( _I |` F ) --> { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) )
20 14 19 mp1i
 |-  ( ( G e. UMGraph /\ N e. V ) -> ( S e. UMGraph <-> ( _I |` F ) : dom ( _I |` F ) --> { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) )
21 12 20 mpbird
 |-  ( ( G e. UMGraph /\ N e. V ) -> S e. UMGraph )