| Step |
Hyp |
Ref |
Expression |
| 1 |
|
upgrres1.v |
|- V = ( Vtx ` G ) |
| 2 |
|
upgrres1.e |
|- E = ( Edg ` G ) |
| 3 |
|
upgrres1.f |
|- F = { e e. E | N e/ e } |
| 4 |
|
upgrres1.s |
|- S = <. ( V \ { N } ) , ( _I |` F ) >. |
| 5 |
|
f1oi |
|- ( _I |` F ) : F -1-1-onto-> F |
| 6 |
|
f1of |
|- ( ( _I |` F ) : F -1-1-onto-> F -> ( _I |` F ) : F --> F ) |
| 7 |
5 6
|
mp1i |
|- ( ( G e. UMGraph /\ N e. V ) -> ( _I |` F ) : F --> F ) |
| 8 |
7
|
ffdmd |
|- ( ( G e. UMGraph /\ N e. V ) -> ( _I |` F ) : dom ( _I |` F ) --> F ) |
| 9 |
|
rnresi |
|- ran ( _I |` F ) = F |
| 10 |
1 2 3
|
umgrres1lem |
|- ( ( G e. UMGraph /\ N e. V ) -> ran ( _I |` F ) C_ { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) |
| 11 |
9 10
|
eqsstrrid |
|- ( ( G e. UMGraph /\ N e. V ) -> F C_ { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) |
| 12 |
8 11
|
fssd |
|- ( ( G e. UMGraph /\ N e. V ) -> ( _I |` F ) : dom ( _I |` F ) --> { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) |
| 13 |
|
opex |
|- <. ( V \ { N } ) , ( _I |` F ) >. e. _V |
| 14 |
4 13
|
eqeltri |
|- S e. _V |
| 15 |
1 2 3 4
|
upgrres1lem2 |
|- ( Vtx ` S ) = ( V \ { N } ) |
| 16 |
15
|
eqcomi |
|- ( V \ { N } ) = ( Vtx ` S ) |
| 17 |
1 2 3 4
|
upgrres1lem3 |
|- ( iEdg ` S ) = ( _I |` F ) |
| 18 |
17
|
eqcomi |
|- ( _I |` F ) = ( iEdg ` S ) |
| 19 |
16 18
|
isumgrs |
|- ( S e. _V -> ( S e. UMGraph <-> ( _I |` F ) : dom ( _I |` F ) --> { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) ) |
| 20 |
14 19
|
mp1i |
|- ( ( G e. UMGraph /\ N e. V ) -> ( S e. UMGraph <-> ( _I |` F ) : dom ( _I |` F ) --> { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) ) |
| 21 |
12 20
|
mpbird |
|- ( ( G e. UMGraph /\ N e. V ) -> S e. UMGraph ) |