Step |
Hyp |
Ref |
Expression |
1 |
|
upgrres1.v |
|- V = ( Vtx ` G ) |
2 |
|
upgrres1.e |
|- E = ( Edg ` G ) |
3 |
|
upgrres1.f |
|- F = { e e. E | N e/ e } |
4 |
|
upgrres1.s |
|- S = <. ( V \ { N } ) , ( _I |` F ) >. |
5 |
|
f1oi |
|- ( _I |` F ) : F -1-1-onto-> F |
6 |
|
f1of1 |
|- ( ( _I |` F ) : F -1-1-onto-> F -> ( _I |` F ) : F -1-1-> F ) |
7 |
5 6
|
mp1i |
|- ( ( G e. USGraph /\ N e. V ) -> ( _I |` F ) : F -1-1-> F ) |
8 |
|
eqidd |
|- ( ( G e. USGraph /\ N e. V ) -> ( _I |` F ) = ( _I |` F ) ) |
9 |
|
dmresi |
|- dom ( _I |` F ) = F |
10 |
9
|
a1i |
|- ( ( G e. USGraph /\ N e. V ) -> dom ( _I |` F ) = F ) |
11 |
|
eqidd |
|- ( ( G e. USGraph /\ N e. V ) -> F = F ) |
12 |
8 10 11
|
f1eq123d |
|- ( ( G e. USGraph /\ N e. V ) -> ( ( _I |` F ) : dom ( _I |` F ) -1-1-> F <-> ( _I |` F ) : F -1-1-> F ) ) |
13 |
7 12
|
mpbird |
|- ( ( G e. USGraph /\ N e. V ) -> ( _I |` F ) : dom ( _I |` F ) -1-1-> F ) |
14 |
|
usgrumgr |
|- ( G e. USGraph -> G e. UMGraph ) |
15 |
1 2 3
|
umgrres1lem |
|- ( ( G e. UMGraph /\ N e. V ) -> ran ( _I |` F ) C_ { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) |
16 |
14 15
|
sylan |
|- ( ( G e. USGraph /\ N e. V ) -> ran ( _I |` F ) C_ { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) |
17 |
|
f1ssr |
|- ( ( ( _I |` F ) : dom ( _I |` F ) -1-1-> F /\ ran ( _I |` F ) C_ { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) -> ( _I |` F ) : dom ( _I |` F ) -1-1-> { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) |
18 |
13 16 17
|
syl2anc |
|- ( ( G e. USGraph /\ N e. V ) -> ( _I |` F ) : dom ( _I |` F ) -1-1-> { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) |
19 |
|
opex |
|- <. ( V \ { N } ) , ( _I |` F ) >. e. _V |
20 |
4 19
|
eqeltri |
|- S e. _V |
21 |
1 2 3 4
|
upgrres1lem2 |
|- ( Vtx ` S ) = ( V \ { N } ) |
22 |
21
|
eqcomi |
|- ( V \ { N } ) = ( Vtx ` S ) |
23 |
1 2 3 4
|
upgrres1lem3 |
|- ( iEdg ` S ) = ( _I |` F ) |
24 |
23
|
eqcomi |
|- ( _I |` F ) = ( iEdg ` S ) |
25 |
22 24
|
isusgrs |
|- ( S e. _V -> ( S e. USGraph <-> ( _I |` F ) : dom ( _I |` F ) -1-1-> { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) ) |
26 |
20 25
|
mp1i |
|- ( ( G e. USGraph /\ N e. V ) -> ( S e. USGraph <-> ( _I |` F ) : dom ( _I |` F ) -1-1-> { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) ) |
27 |
18 26
|
mpbird |
|- ( ( G e. USGraph /\ N e. V ) -> S e. USGraph ) |