Metamath Proof Explorer


Theorem usgrres1

Description: Restricting a simple graph by removing one vertex results in a simple graph. Remark: This restricted graph is not a subgraph of the original graph in the sense of df-subgr since the domains of the edge functions may not be compatible. (Contributed by Alexander van der Vekens, 2-Jan-2018) (Revised by AV, 10-Jan-2020) (Revised by AV, 23-Oct-2020) (Proof shortened by AV, 27-Nov-2020)

Ref Expression
Hypotheses upgrres1.v V = Vtx G
upgrres1.e E = Edg G
upgrres1.f F = e E | N e
upgrres1.s S = V N I F
Assertion usgrres1 G USGraph N V S USGraph

Proof

Step Hyp Ref Expression
1 upgrres1.v V = Vtx G
2 upgrres1.e E = Edg G
3 upgrres1.f F = e E | N e
4 upgrres1.s S = V N I F
5 f1oi I F : F 1-1 onto F
6 f1of1 I F : F 1-1 onto F I F : F 1-1 F
7 5 6 mp1i G USGraph N V I F : F 1-1 F
8 eqidd G USGraph N V I F = I F
9 dmresi dom I F = F
10 9 a1i G USGraph N V dom I F = F
11 eqidd G USGraph N V F = F
12 8 10 11 f1eq123d G USGraph N V I F : dom I F 1-1 F I F : F 1-1 F
13 7 12 mpbird G USGraph N V I F : dom I F 1-1 F
14 usgrumgr G USGraph G UMGraph
15 1 2 3 umgrres1lem G UMGraph N V ran I F p 𝒫 V N | p = 2
16 14 15 sylan G USGraph N V ran I F p 𝒫 V N | p = 2
17 f1ssr I F : dom I F 1-1 F ran I F p 𝒫 V N | p = 2 I F : dom I F 1-1 p 𝒫 V N | p = 2
18 13 16 17 syl2anc G USGraph N V I F : dom I F 1-1 p 𝒫 V N | p = 2
19 opex V N I F V
20 4 19 eqeltri S V
21 1 2 3 4 upgrres1lem2 Vtx S = V N
22 21 eqcomi V N = Vtx S
23 1 2 3 4 upgrres1lem3 iEdg S = I F
24 23 eqcomi I F = iEdg S
25 22 24 isusgrs S V S USGraph I F : dom I F 1-1 p 𝒫 V N | p = 2
26 20 25 mp1i G USGraph N V S USGraph I F : dom I F 1-1 p 𝒫 V N | p = 2
27 18 26 mpbird G USGraph N V S USGraph