Metamath Proof Explorer


Theorem upgrres1lem3

Description: Lemma 3 for upgrres1 . (Contributed by AV, 7-Nov-2020)

Ref Expression
Hypotheses upgrres1.v V=VtxG
upgrres1.e E=EdgG
upgrres1.f F=eE|Ne
upgrres1.s S=VNIF
Assertion upgrres1lem3 iEdgS=IF

Proof

Step Hyp Ref Expression
1 upgrres1.v V=VtxG
2 upgrres1.e E=EdgG
3 upgrres1.f F=eE|Ne
4 upgrres1.s S=VNIF
5 4 fveq2i iEdgS=iEdgVNIF
6 1 2 3 upgrres1lem1 VNVIFV
7 opiedgfv VNVIFViEdgVNIF=IF
8 6 7 ax-mp iEdgVNIF=IF
9 5 8 eqtri iEdgS=IF