Step |
Hyp |
Ref |
Expression |
1 |
|
upgrres1.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
upgrres1.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
3 |
|
upgrres1.f |
⊢ 𝐹 = { 𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒 } |
4 |
|
upgrres1.s |
⊢ 𝑆 = 〈 ( 𝑉 ∖ { 𝑁 } ) , ( I ↾ 𝐹 ) 〉 |
5 |
4
|
fveq2i |
⊢ ( iEdg ‘ 𝑆 ) = ( iEdg ‘ 〈 ( 𝑉 ∖ { 𝑁 } ) , ( I ↾ 𝐹 ) 〉 ) |
6 |
1 2 3
|
upgrres1lem1 |
⊢ ( ( 𝑉 ∖ { 𝑁 } ) ∈ V ∧ ( I ↾ 𝐹 ) ∈ V ) |
7 |
|
opiedgfv |
⊢ ( ( ( 𝑉 ∖ { 𝑁 } ) ∈ V ∧ ( I ↾ 𝐹 ) ∈ V ) → ( iEdg ‘ 〈 ( 𝑉 ∖ { 𝑁 } ) , ( I ↾ 𝐹 ) 〉 ) = ( I ↾ 𝐹 ) ) |
8 |
6 7
|
ax-mp |
⊢ ( iEdg ‘ 〈 ( 𝑉 ∖ { 𝑁 } ) , ( I ↾ 𝐹 ) 〉 ) = ( I ↾ 𝐹 ) |
9 |
5 8
|
eqtri |
⊢ ( iEdg ‘ 𝑆 ) = ( I ↾ 𝐹 ) |