Step |
Hyp |
Ref |
Expression |
1 |
|
upgrres1.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
upgrres1.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
3 |
|
upgrres1.f |
⊢ 𝐹 = { 𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒 } |
4 |
|
upgrres1.s |
⊢ 𝑆 = 〈 ( 𝑉 ∖ { 𝑁 } ) , ( I ↾ 𝐹 ) 〉 |
5 |
|
f1oi |
⊢ ( I ↾ 𝐹 ) : 𝐹 –1-1-onto→ 𝐹 |
6 |
|
f1of1 |
⊢ ( ( I ↾ 𝐹 ) : 𝐹 –1-1-onto→ 𝐹 → ( I ↾ 𝐹 ) : 𝐹 –1-1→ 𝐹 ) |
7 |
5 6
|
mp1i |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) → ( I ↾ 𝐹 ) : 𝐹 –1-1→ 𝐹 ) |
8 |
|
eqidd |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) → ( I ↾ 𝐹 ) = ( I ↾ 𝐹 ) ) |
9 |
|
dmresi |
⊢ dom ( I ↾ 𝐹 ) = 𝐹 |
10 |
9
|
a1i |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) → dom ( I ↾ 𝐹 ) = 𝐹 ) |
11 |
|
eqidd |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) → 𝐹 = 𝐹 ) |
12 |
8 10 11
|
f1eq123d |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) → ( ( I ↾ 𝐹 ) : dom ( I ↾ 𝐹 ) –1-1→ 𝐹 ↔ ( I ↾ 𝐹 ) : 𝐹 –1-1→ 𝐹 ) ) |
13 |
7 12
|
mpbird |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) → ( I ↾ 𝐹 ) : dom ( I ↾ 𝐹 ) –1-1→ 𝐹 ) |
14 |
|
usgrumgr |
⊢ ( 𝐺 ∈ USGraph → 𝐺 ∈ UMGraph ) |
15 |
1 2 3
|
umgrres1lem |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉 ) → ran ( I ↾ 𝐹 ) ⊆ { 𝑝 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∣ ( ♯ ‘ 𝑝 ) = 2 } ) |
16 |
14 15
|
sylan |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) → ran ( I ↾ 𝐹 ) ⊆ { 𝑝 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∣ ( ♯ ‘ 𝑝 ) = 2 } ) |
17 |
|
f1ssr |
⊢ ( ( ( I ↾ 𝐹 ) : dom ( I ↾ 𝐹 ) –1-1→ 𝐹 ∧ ran ( I ↾ 𝐹 ) ⊆ { 𝑝 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∣ ( ♯ ‘ 𝑝 ) = 2 } ) → ( I ↾ 𝐹 ) : dom ( I ↾ 𝐹 ) –1-1→ { 𝑝 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∣ ( ♯ ‘ 𝑝 ) = 2 } ) |
18 |
13 16 17
|
syl2anc |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) → ( I ↾ 𝐹 ) : dom ( I ↾ 𝐹 ) –1-1→ { 𝑝 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∣ ( ♯ ‘ 𝑝 ) = 2 } ) |
19 |
|
opex |
⊢ 〈 ( 𝑉 ∖ { 𝑁 } ) , ( I ↾ 𝐹 ) 〉 ∈ V |
20 |
4 19
|
eqeltri |
⊢ 𝑆 ∈ V |
21 |
1 2 3 4
|
upgrres1lem2 |
⊢ ( Vtx ‘ 𝑆 ) = ( 𝑉 ∖ { 𝑁 } ) |
22 |
21
|
eqcomi |
⊢ ( 𝑉 ∖ { 𝑁 } ) = ( Vtx ‘ 𝑆 ) |
23 |
1 2 3 4
|
upgrres1lem3 |
⊢ ( iEdg ‘ 𝑆 ) = ( I ↾ 𝐹 ) |
24 |
23
|
eqcomi |
⊢ ( I ↾ 𝐹 ) = ( iEdg ‘ 𝑆 ) |
25 |
22 24
|
isusgrs |
⊢ ( 𝑆 ∈ V → ( 𝑆 ∈ USGraph ↔ ( I ↾ 𝐹 ) : dom ( I ↾ 𝐹 ) –1-1→ { 𝑝 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∣ ( ♯ ‘ 𝑝 ) = 2 } ) ) |
26 |
20 25
|
mp1i |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝑆 ∈ USGraph ↔ ( I ↾ 𝐹 ) : dom ( I ↾ 𝐹 ) –1-1→ { 𝑝 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∣ ( ♯ ‘ 𝑝 ) = 2 } ) ) |
27 |
18 26
|
mpbird |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) → 𝑆 ∈ USGraph ) |