Metamath Proof Explorer


Theorem umgrres1

Description: A multigraph obtained by removing one vertex and all edges incident with this vertex is a multigraph. Remark: This graph is not a subgraph of the original graph in the sense of df-subgr since the domains of the edge functions may not be compatible. (Contributed by AV, 27-Nov-2020)

Ref Expression
Hypotheses upgrres1.v V=VtxG
upgrres1.e E=EdgG
upgrres1.f F=eE|Ne
upgrres1.s S=VNIF
Assertion umgrres1 GUMGraphNVSUMGraph

Proof

Step Hyp Ref Expression
1 upgrres1.v V=VtxG
2 upgrres1.e E=EdgG
3 upgrres1.f F=eE|Ne
4 upgrres1.s S=VNIF
5 f1oi IF:F1-1 ontoF
6 f1of IF:F1-1 ontoFIF:FF
7 5 6 mp1i GUMGraphNVIF:FF
8 7 ffdmd GUMGraphNVIF:domIFF
9 rnresi ranIF=F
10 1 2 3 umgrres1lem GUMGraphNVranIFp𝒫VN|p=2
11 9 10 eqsstrrid GUMGraphNVFp𝒫VN|p=2
12 8 11 fssd GUMGraphNVIF:domIFp𝒫VN|p=2
13 opex VNIFV
14 4 13 eqeltri SV
15 1 2 3 4 upgrres1lem2 VtxS=VN
16 15 eqcomi VN=VtxS
17 1 2 3 4 upgrres1lem3 iEdgS=IF
18 17 eqcomi IF=iEdgS
19 16 18 isumgrs SVSUMGraphIF:domIFp𝒫VN|p=2
20 14 19 mp1i GUMGraphNVSUMGraphIF:domIFp𝒫VN|p=2
21 12 20 mpbird GUMGraphNVSUMGraph