Metamath Proof Explorer


Theorem elpwdifsn

Description: A subset of a set is an element of the power set of the difference of the set with a singleton if the subset does not contain the singleton element. (Contributed by AV, 10-Jan-2020)

Ref Expression
Assertion elpwdifsn SWSVASS𝒫VA

Proof

Step Hyp Ref Expression
1 simp2 SWSVASSV
2 1 sselda SWSVASxSxV
3 df-nel AS¬AS
4 3 biimpi AS¬AS
5 4 3ad2ant3 SWSVAS¬AS
6 5 anim1ci SWSVASxSxS¬AS
7 nelne2 xS¬ASxA
8 6 7 syl SWSVASxSxA
9 eldifsn xVAxVxA
10 2 8 9 sylanbrc SWSVASxSxVA
11 10 ex SWSVASxSxVA
12 11 ssrdv SWSVASSVA
13 elpwg SWS𝒫VASVA
14 13 3ad2ant1 SWSVASS𝒫VASVA
15 12 14 mpbird SWSVASS𝒫VA