Metamath Proof Explorer


Theorem elpwdifsn

Description: A subset of a set is an element of the power set of the difference of the set with a singleton if the subset does not contain the singleton element. (Contributed by AV, 10-Jan-2020)

Ref Expression
Assertion elpwdifsn
|- ( ( S e. W /\ S C_ V /\ A e/ S ) -> S e. ~P ( V \ { A } ) )

Proof

Step Hyp Ref Expression
1 simp2
 |-  ( ( S e. W /\ S C_ V /\ A e/ S ) -> S C_ V )
2 1 sselda
 |-  ( ( ( S e. W /\ S C_ V /\ A e/ S ) /\ x e. S ) -> x e. V )
3 df-nel
 |-  ( A e/ S <-> -. A e. S )
4 3 biimpi
 |-  ( A e/ S -> -. A e. S )
5 4 3ad2ant3
 |-  ( ( S e. W /\ S C_ V /\ A e/ S ) -> -. A e. S )
6 5 anim1ci
 |-  ( ( ( S e. W /\ S C_ V /\ A e/ S ) /\ x e. S ) -> ( x e. S /\ -. A e. S ) )
7 nelne2
 |-  ( ( x e. S /\ -. A e. S ) -> x =/= A )
8 6 7 syl
 |-  ( ( ( S e. W /\ S C_ V /\ A e/ S ) /\ x e. S ) -> x =/= A )
9 eldifsn
 |-  ( x e. ( V \ { A } ) <-> ( x e. V /\ x =/= A ) )
10 2 8 9 sylanbrc
 |-  ( ( ( S e. W /\ S C_ V /\ A e/ S ) /\ x e. S ) -> x e. ( V \ { A } ) )
11 10 ex
 |-  ( ( S e. W /\ S C_ V /\ A e/ S ) -> ( x e. S -> x e. ( V \ { A } ) ) )
12 11 ssrdv
 |-  ( ( S e. W /\ S C_ V /\ A e/ S ) -> S C_ ( V \ { A } ) )
13 elpwg
 |-  ( S e. W -> ( S e. ~P ( V \ { A } ) <-> S C_ ( V \ { A } ) ) )
14 13 3ad2ant1
 |-  ( ( S e. W /\ S C_ V /\ A e/ S ) -> ( S e. ~P ( V \ { A } ) <-> S C_ ( V \ { A } ) ) )
15 12 14 mpbird
 |-  ( ( S e. W /\ S C_ V /\ A e/ S ) -> S e. ~P ( V \ { A } ) )