Metamath Proof Explorer


Theorem uprcl2

Description: Reverse closure for the class of universal property. (Contributed by Zhi Wang, 25-Sep-2025)

Ref Expression
Hypothesis uprcl2.x No typesetting found for |- ( ph -> X ( <. F , G >. ( D UP E ) W ) M ) with typecode |-
Assertion uprcl2 φ F D Func E G

Proof

Step Hyp Ref Expression
1 uprcl2.x Could not format ( ph -> X ( <. F , G >. ( D UP E ) W ) M ) : No typesetting found for |- ( ph -> X ( <. F , G >. ( D UP E ) W ) M ) with typecode |-
2 df-br Could not format ( X ( <. F , G >. ( D UP E ) W ) M <-> <. X , M >. e. ( <. F , G >. ( D UP E ) W ) ) : No typesetting found for |- ( X ( <. F , G >. ( D UP E ) W ) M <-> <. X , M >. e. ( <. F , G >. ( D UP E ) W ) ) with typecode |-
3 2 biimpi Could not format ( X ( <. F , G >. ( D UP E ) W ) M -> <. X , M >. e. ( <. F , G >. ( D UP E ) W ) ) : No typesetting found for |- ( X ( <. F , G >. ( D UP E ) W ) M -> <. X , M >. e. ( <. F , G >. ( D UP E ) W ) ) with typecode |-
4 eqid Base E = Base E
5 4 uprcl Could not format ( <. X , M >. e. ( <. F , G >. ( D UP E ) W ) -> ( <. F , G >. e. ( D Func E ) /\ W e. ( Base ` E ) ) ) : No typesetting found for |- ( <. X , M >. e. ( <. F , G >. ( D UP E ) W ) -> ( <. F , G >. e. ( D Func E ) /\ W e. ( Base ` E ) ) ) with typecode |-
6 5 simpld Could not format ( <. X , M >. e. ( <. F , G >. ( D UP E ) W ) -> <. F , G >. e. ( D Func E ) ) : No typesetting found for |- ( <. X , M >. e. ( <. F , G >. ( D UP E ) W ) -> <. F , G >. e. ( D Func E ) ) with typecode |-
7 df-br F D Func E G F G D Func E
8 7 biimpri F G D Func E F D Func E G
9 1 3 6 8 4syl φ F D Func E G