Metamath Proof Explorer


Theorem uprcl3

Description: Reverse closure for the class of universal property. (Contributed by Zhi Wang, 25-Sep-2025)

Ref Expression
Hypotheses uprcl2.x No typesetting found for |- ( ph -> X ( <. F , G >. ( D UP E ) W ) M ) with typecode |-
uprcl3.c C = Base E
Assertion uprcl3 φ W C

Proof

Step Hyp Ref Expression
1 uprcl2.x Could not format ( ph -> X ( <. F , G >. ( D UP E ) W ) M ) : No typesetting found for |- ( ph -> X ( <. F , G >. ( D UP E ) W ) M ) with typecode |-
2 uprcl3.c C = Base E
3 df-br Could not format ( X ( <. F , G >. ( D UP E ) W ) M <-> <. X , M >. e. ( <. F , G >. ( D UP E ) W ) ) : No typesetting found for |- ( X ( <. F , G >. ( D UP E ) W ) M <-> <. X , M >. e. ( <. F , G >. ( D UP E ) W ) ) with typecode |-
4 3 biimpi Could not format ( X ( <. F , G >. ( D UP E ) W ) M -> <. X , M >. e. ( <. F , G >. ( D UP E ) W ) ) : No typesetting found for |- ( X ( <. F , G >. ( D UP E ) W ) M -> <. X , M >. e. ( <. F , G >. ( D UP E ) W ) ) with typecode |-
5 2 uprcl Could not format ( <. X , M >. e. ( <. F , G >. ( D UP E ) W ) -> ( <. F , G >. e. ( D Func E ) /\ W e. C ) ) : No typesetting found for |- ( <. X , M >. e. ( <. F , G >. ( D UP E ) W ) -> ( <. F , G >. e. ( D Func E ) /\ W e. C ) ) with typecode |-
6 5 simprd Could not format ( <. X , M >. e. ( <. F , G >. ( D UP E ) W ) -> W e. C ) : No typesetting found for |- ( <. X , M >. e. ( <. F , G >. ( D UP E ) W ) -> W e. C ) with typecode |-
7 1 4 6 3syl φ W C