Metamath Proof Explorer


Theorem usgredgleordALT

Description: Alternate proof for usgredgleord based on usgriedgleord . In a simple graph the number of edges which contain a given vertex is not greater than the number of vertices. (Contributed by Alexander van der Vekens, 4-Jan-2018) (Revised by AV, 18-Oct-2020) (Proof shortened by AV, 5-May-2021) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses usgredgleord.v V = Vtx G
usgredgleord.e E = Edg G
Assertion usgredgleordALT G USGraph N V e E | N e V

Proof

Step Hyp Ref Expression
1 usgredgleord.v V = Vtx G
2 usgredgleord.e E = Edg G
3 fvex iEdg G V
4 3 dmex dom iEdg G V
5 4 rabex x dom iEdg G | N iEdg G x V
6 5 a1i G USGraph N V x dom iEdg G | N iEdg G x V
7 eqid iEdg G = iEdg G
8 eqid x dom iEdg G | N iEdg G x = x dom iEdg G | N iEdg G x
9 eleq2w e = f N e N f
10 9 cbvrabv e E | N e = f E | N f
11 eqid y x dom iEdg G | N iEdg G x iEdg G y = y x dom iEdg G | N iEdg G x iEdg G y
12 2 7 1 8 10 11 usgredgedg G USGraph N V y x dom iEdg G | N iEdg G x iEdg G y : x dom iEdg G | N iEdg G x 1-1 onto e E | N e
13 6 12 hasheqf1od G USGraph N V x dom iEdg G | N iEdg G x = e E | N e
14 1 7 usgriedgleord G USGraph N V x dom iEdg G | N iEdg G x V
15 13 14 eqbrtrrd G USGraph N V e E | N e V