Metamath Proof Explorer


Theorem usgrexmpl2nblem

Description: Lemma for usgrexmpl2nb0 etc. (Contributed by AV, 9-Aug-2025)

Ref Expression
Hypotheses usgrexmpl2.v V = 0 5
usgrexmpl2.e E = ⟨“ 0 1 1 2 2 3 3 4 4 5 0 3 0 5 ”⟩
usgrexmpl2.g G = V E
Assertion usgrexmpl2nblem K 0 1 2 3 4 5 G NeighbVtx K = n 0 1 2 3 4 5 | K n 0 3 0 1 1 2 2 3 3 4 4 5 0 5

Proof

Step Hyp Ref Expression
1 usgrexmpl2.v V = 0 5
2 usgrexmpl2.e E = ⟨“ 0 1 1 2 2 3 3 4 4 5 0 3 0 5 ”⟩
3 usgrexmpl2.g G = V E
4 1 2 3 usgrexmpl2 G USGraph
5 1 2 3 usgrexmpl2vtx Vtx G = 0 1 2 3 4 5
6 5 eqcomi 0 1 2 3 4 5 = Vtx G
7 1 2 3 usgrexmpl2edg Edg G = 0 3 0 1 1 2 2 3 3 4 4 5 0 5
8 7 eqcomi 0 3 0 1 1 2 2 3 3 4 4 5 0 5 = Edg G
9 6 8 nbusgrvtx G USGraph K 0 1 2 3 4 5 G NeighbVtx K = n 0 1 2 3 4 5 | K n 0 3 0 1 1 2 2 3 3 4 4 5 0 5
10 4 9 mpan K 0 1 2 3 4 5 G NeighbVtx K = n 0 1 2 3 4 5 | K n 0 3 0 1 1 2 2 3 3 4 4 5 0 5