Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alexander van der Vekens
Graph theory (extension)
Local isomorphisms of graphs
usgrexmpl2nblem
Next ⟩
usgrexmpl2nb0
Metamath Proof Explorer
Ascii
Unicode
Theorem
usgrexmpl2nblem
Description:
Lemma for
usgrexmpl2nb0
etc.
(Contributed by
AV
, 9-Aug-2025)
Ref
Expression
Hypotheses
usgrexmpl2.v
⊢
V
=
0
…
5
usgrexmpl2.e
⊢
E
=
〈“
0
1
1
2
2
3
3
4
4
5
0
3
0
5
”〉
usgrexmpl2.g
⊢
G
=
V
E
Assertion
usgrexmpl2nblem
⊢
K
∈
0
1
2
∪
3
4
5
→
G
NeighbVtx
K
=
n
∈
0
1
2
∪
3
4
5
|
K
n
∈
0
3
∪
0
1
1
2
2
3
∪
3
4
4
5
0
5
Proof
Step
Hyp
Ref
Expression
1
usgrexmpl2.v
⊢
V
=
0
…
5
2
usgrexmpl2.e
⊢
E
=
〈“
0
1
1
2
2
3
3
4
4
5
0
3
0
5
”〉
3
usgrexmpl2.g
⊢
G
=
V
E
4
1
2
3
usgrexmpl2
⊢
G
∈
USGraph
5
1
2
3
usgrexmpl2vtx
⊢
Vtx
⁡
G
=
0
1
2
∪
3
4
5
6
5
eqcomi
⊢
0
1
2
∪
3
4
5
=
Vtx
⁡
G
7
1
2
3
usgrexmpl2edg
⊢
Edg
⁡
G
=
0
3
∪
0
1
1
2
2
3
∪
3
4
4
5
0
5
8
7
eqcomi
⊢
0
3
∪
0
1
1
2
2
3
∪
3
4
4
5
0
5
=
Edg
⁡
G
9
6
8
nbusgrvtx
⊢
G
∈
USGraph
∧
K
∈
0
1
2
∪
3
4
5
→
G
NeighbVtx
K
=
n
∈
0
1
2
∪
3
4
5
|
K
n
∈
0
3
∪
0
1
1
2
2
3
∪
3
4
4
5
0
5
10
4
9
mpan
⊢
K
∈
0
1
2
∪
3
4
5
→
G
NeighbVtx
K
=
n
∈
0
1
2
∪
3
4
5
|
K
n
∈
0
3
∪
0
1
1
2
2
3
∪
3
4
4
5
0
5