Database GRAPH THEORY Undirected graphs Vertex degree usgrvd00  
				
		 
		
			
		 
		Description:   If every vertex in a simple graph has degree 0, there is no edge in the
       graph.  (Contributed by Alexander van der Vekens , 12-Jul-2018) 
       (Revised by AV , 17-Dec-2020)   (Proof shortened by AV , 23-Dec-2020) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						vtxdusgradjvtx.v   ⊢   V  =    Vtx   ⁡  G        
					 
					
						vtxdusgradjvtx.e   ⊢   E  =    Edg   ⁡  G        
					 
				
					Assertion 
					usgrvd00    ⊢   G  ∈  USGraph    →    ∀  v  ∈  V      VtxDeg   ⁡  G   ⁡  v   =   0       →   E  =  ∅          
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							vtxdusgradjvtx.v  ⊢   V  =    Vtx   ⁡  G        
						
							2 
								
							 
							vtxdusgradjvtx.e  ⊢   E  =    Edg   ⁡  G        
						
							3 
								
							 
							usgruhgr   ⊢   G  ∈  USGraph    →   G  ∈  UHGraph         
						
							4 
								1  2 
							 
							uhgrvd00   ⊢   G  ∈  UHGraph    →    ∀  v  ∈  V      VtxDeg   ⁡  G   ⁡  v   =   0       →   E  =  ∅          
						
							5 
								3  4 
							 
							syl   ⊢   G  ∈  USGraph    →    ∀  v  ∈  V      VtxDeg   ⁡  G   ⁡  v   =   0       →   E  =  ∅