Metamath Proof Explorer


Theorem uspgrloopiedg

Description: The set of edges in a graph (simple pseudograph) with one edge which is a loop (see uspgr1v1eop ) is a singleton of a singleton. (Contributed by AV, 21-Feb-2021)

Ref Expression
Hypothesis uspgrloopvtx.g G=VAN
Assertion uspgrloopiedg VWAXiEdgG=AN

Proof

Step Hyp Ref Expression
1 uspgrloopvtx.g G=VAN
2 1 fveq2i iEdgG=iEdgVAN
3 snex ANV
4 3 a1i AXANV
5 opiedgfv VWANViEdgVAN=AN
6 4 5 sylan2 VWAXiEdgVAN=AN
7 2 6 eqtrid VWAXiEdgG=AN