Metamath Proof Explorer


Theorem uspgrloopiedg

Description: The set of edges in a graph (simple pseudograph) with one edge which is a loop (see uspgr1v1eop ) is a singleton of a singleton. (Contributed by AV, 21-Feb-2021)

Ref Expression
Hypothesis uspgrloopvtx.g 𝐺 = ⟨ 𝑉 , { ⟨ 𝐴 , { 𝑁 } ⟩ } ⟩
Assertion uspgrloopiedg ( ( 𝑉𝑊𝐴𝑋 ) → ( iEdg ‘ 𝐺 ) = { ⟨ 𝐴 , { 𝑁 } ⟩ } )

Proof

Step Hyp Ref Expression
1 uspgrloopvtx.g 𝐺 = ⟨ 𝑉 , { ⟨ 𝐴 , { 𝑁 } ⟩ } ⟩
2 1 fveq2i ( iEdg ‘ 𝐺 ) = ( iEdg ‘ ⟨ 𝑉 , { ⟨ 𝐴 , { 𝑁 } ⟩ } ⟩ )
3 snex { ⟨ 𝐴 , { 𝑁 } ⟩ } ∈ V
4 3 a1i ( 𝐴𝑋 → { ⟨ 𝐴 , { 𝑁 } ⟩ } ∈ V )
5 opiedgfv ( ( 𝑉𝑊 ∧ { ⟨ 𝐴 , { 𝑁 } ⟩ } ∈ V ) → ( iEdg ‘ ⟨ 𝑉 , { ⟨ 𝐴 , { 𝑁 } ⟩ } ⟩ ) = { ⟨ 𝐴 , { 𝑁 } ⟩ } )
6 4 5 sylan2 ( ( 𝑉𝑊𝐴𝑋 ) → ( iEdg ‘ ⟨ 𝑉 , { ⟨ 𝐴 , { 𝑁 } ⟩ } ⟩ ) = { ⟨ 𝐴 , { 𝑁 } ⟩ } )
7 2 6 syl5eq ( ( 𝑉𝑊𝐴𝑋 ) → ( iEdg ‘ 𝐺 ) = { ⟨ 𝐴 , { 𝑁 } ⟩ } )