Metamath Proof Explorer


Theorem uspgrloopvd2

Description: The vertex degree of a one-edge graph, case 4: an edge from a vertex to itself contributes two to the vertex's degree. I. e. in a graph (simple pseudograph) with one edge which is a loop (see uspgr1v1eop ), the vertex connected with itself by the loop has degree 2. (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by Alexander van der Vekens, 22-Dec-2017) (Revised by AV, 17-Dec-2020) (Proof shortened by AV, 21-Feb-2021)

Ref Expression
Hypothesis uspgrloopvtx.g G=VAN
Assertion uspgrloopvd2 VWAXNVVtxDegGN=2

Proof

Step Hyp Ref Expression
1 uspgrloopvtx.g G=VAN
2 1 uspgrloopvtx VWVtxG=V
3 2 3ad2ant1 VWAXNVVtxG=V
4 simp2 VWAXNVAX
5 simp3 VWAXNVNV
6 1 uspgrloopiedg VWAXiEdgG=AN
7 6 3adant3 VWAXNViEdgG=AN
8 3 4 5 7 1loopgrvd2 VWAXNVVtxDegGN=2