Metamath Proof Explorer


Theorem uspgrunop

Description: The union of two simple pseudographs (with the same vertex set): If <. V , E >. and <. V , F >. are simple pseudographs, then <. V , E u. F >. is a pseudograph (the vertex set stays the same, but the edges from both graphs are kept, maybe resulting incident two edges between two vertices). (Contributed by Alexander van der Vekens, 10-Aug-2017) (Revised by AV, 16-Oct-2020) (Revised by AV, 24-Oct-2021)

Ref Expression
Hypotheses uspgrun.g φGUSHGraph
uspgrun.h φHUSHGraph
uspgrun.e E=iEdgG
uspgrun.f F=iEdgH
uspgrun.vg V=VtxG
uspgrun.vh φVtxH=V
uspgrun.i φdomEdomF=
Assertion uspgrunop φVEFUPGraph

Proof

Step Hyp Ref Expression
1 uspgrun.g φGUSHGraph
2 uspgrun.h φHUSHGraph
3 uspgrun.e E=iEdgG
4 uspgrun.f F=iEdgH
5 uspgrun.vg V=VtxG
6 uspgrun.vh φVtxH=V
7 uspgrun.i φdomEdomF=
8 uspgrupgr GUSHGraphGUPGraph
9 1 8 syl φGUPGraph
10 uspgrupgr HUSHGraphHUPGraph
11 2 10 syl φHUPGraph
12 9 11 3 4 5 6 7 upgrunop φVEFUPGraph