Metamath Proof Explorer


Theorem uun132

Description: A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis uun132.1 φψχθ
Assertion uun132 φψχθ

Proof

Step Hyp Ref Expression
1 uun132.1 φψχθ
2 3anass φψχφψχ
3 2 1 sylbi φψχθ