Description: A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | uun132.1 | |- ( ( ph /\ ( ps /\ ch ) ) -> th ) |
|
| Assertion | uun132 | |- ( ( ph /\ ps /\ ch ) -> th ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uun132.1 | |- ( ( ph /\ ( ps /\ ch ) ) -> th ) |
|
| 2 | 3anass | |- ( ( ph /\ ps /\ ch ) <-> ( ph /\ ( ps /\ ch ) ) ) |
|
| 3 | 2 1 | sylbi | |- ( ( ph /\ ps /\ ch ) -> th ) |