Metamath Proof Explorer


Theorem uun132

Description: A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis uun132.1
|- ( ( ph /\ ( ps /\ ch ) ) -> th )
Assertion uun132
|- ( ( ph /\ ps /\ ch ) -> th )

Proof

Step Hyp Ref Expression
1 uun132.1
 |-  ( ( ph /\ ( ps /\ ch ) ) -> th )
2 3anass
 |-  ( ( ph /\ ps /\ ch ) <-> ( ph /\ ( ps /\ ch ) ) )
3 2 1 sylbi
 |-  ( ( ph /\ ps /\ ch ) -> th )