Description: A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | uun132p1.1 | |- ( ( ( ps /\ ch ) /\ ph ) -> th ) |
|
| Assertion | uun132p1 | |- ( ( ph /\ ps /\ ch ) -> th ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uun132p1.1 | |- ( ( ( ps /\ ch ) /\ ph ) -> th ) |
|
| 2 | 3anass | |- ( ( ph /\ ps /\ ch ) <-> ( ph /\ ( ps /\ ch ) ) ) |
|
| 3 | ancom | |- ( ( ph /\ ( ps /\ ch ) ) <-> ( ( ps /\ ch ) /\ ph ) ) |
|
| 4 | 2 3 | bitri | |- ( ( ph /\ ps /\ ch ) <-> ( ( ps /\ ch ) /\ ph ) ) |
| 5 | 4 1 | sylbi | |- ( ( ph /\ ps /\ ch ) -> th ) |