Description: A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | uun132p1.1 | ⊢ ( ( ( 𝜓 ∧ 𝜒 ) ∧ 𝜑 ) → 𝜃 ) | |
| Assertion | uun132p1 | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → 𝜃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uun132p1.1 | ⊢ ( ( ( 𝜓 ∧ 𝜒 ) ∧ 𝜑 ) → 𝜃 ) | |
| 2 | 3anass | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ) ) ) | |
| 3 | ancom | ⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ) ) ↔ ( ( 𝜓 ∧ 𝜒 ) ∧ 𝜑 ) ) | |
| 4 | 2 3 | bitri | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ( ( 𝜓 ∧ 𝜒 ) ∧ 𝜑 ) ) |
| 5 | 4 1 | sylbi | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → 𝜃 ) |