Metamath Proof Explorer


Theorem uun132

Description: A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis uun132.1 ( ( 𝜑 ∧ ( 𝜓𝜒 ) ) → 𝜃 )
Assertion uun132 ( ( 𝜑𝜓𝜒 ) → 𝜃 )

Proof

Step Hyp Ref Expression
1 uun132.1 ( ( 𝜑 ∧ ( 𝜓𝜒 ) ) → 𝜃 )
2 3anass ( ( 𝜑𝜓𝜒 ) ↔ ( 𝜑 ∧ ( 𝜓𝜒 ) ) )
3 2 1 sylbi ( ( 𝜑𝜓𝜒 ) → 𝜃 )